Thermal Modeling Applied to Animal Systems

1966 ◽  
Vol 88 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Richard C. Birkebak ◽  
Clifford J. Cremers ◽  
Eugene A. LeFebvre

Predictions of the heat loss from animal systems under the influence of environmental air temperature using thermal modeling techniques are found to agree with available experimental results. To perform the necessary experiments on heat loss, over a variety of environmental conditions for all species of interest, would be a formidable task. The thermal modeling approach circumvents these difficulties by the use of basic heat-transfer equations and properties and is suggested and exemplified as an alternative.

1975 ◽  
Vol 39 (1) ◽  
pp. 93-102 ◽  
Author(s):  
R. M. Smith ◽  
J. M. Hanna

Fourteen male subjects with unweighted mean skinfolds (MSF) of 10.23 mm underwent several 3-h exposures to cold water and air of similar velocities in order to compare by indirect calorimetry the rate of heat loss in water and air. Measurements of heat loss (excluding the head) at each air temperature (Ta = 25, 20, 10 degrees C) and water temperature (Tw = 29–33 degrees C) were used in a linear approximation of overall heat transfer from body core (Tre) to air or water. We found the lower critical air and water temperatures to fall as a negative linear function of MSF. The slope of these lines was not significantly different in air and water with a mean of minus 0.237 degrees C/mm MSF. Overall heat conductance was 3.34 times greater in water. However, this value was not fixed but varied as an inverse curvilinear function of MSF. Thus, equivalent water-air temperatures also varied as a function of MSF. Between limits of 100–250% of resting heat loss the followingrelationships between MSF and equivalent water-air temperatures were found (see article).


Author(s):  
D.V. Tarasevych ◽  
◽  
O.V. Bogdan ◽  

When choosing architectural and planning solutions, such climatic factors as air temperature and humidity, having scalar quantities, as well as solar radiation, wind and precipitation having vector characteristics, must be taken into account. The calculated climatic parameters for the design of building enclosing structures, heat loss calculations and heat supply regulation are provided in the current documentation on norms and standards. The practical exploitation of various buildings demonstrates that in terms of initial climatic data, the choice of design parameters is not always efficiently justified; hence, the influence of the environment on the heating regime of the structures is insufficient in the estimations and sometimes erroneous. The wind is one of such climatic parameters. Its velocity and repeatability impact the heat exchange of the building structure with the environment as well as the alteration in temperature regime. The wind current towards the building creates additional pressure on the facade of the construction from the wind side direction. This leads, firstly, to air infiltration via the enclosing structures, and secondly, to the rise of heat exchange from the outer surface of the wall on the windward side. Based on estimated and analytical research, the values of the change in wind velocity depending on the altitude were analyzed, and its influence on the heat loss during heating of multi-storey buildings was assessed. The alterations in the wind velocity depending on the altitude were analyzed in the conditions of dense (urban) and broad construction. Besides, the authors presented the dependence of the convective component of the heat transfer coefficient of the outer surface of the structure on the values of the wind velocity. Based on the performed and presented calculations, it can be noticed that the heat transfer of the external structure will be much higher for multi-storey buildings than for mid-rise constructions. Thus, the convective component of the heat transfer coefficient of the outer surface rises by 36 % when the wind velocity increases from 5 m/s to 7 m/s. If not taking into consideration this dependence in the design, it can significantly influence the estimation of heat loss and energy efficiency of buildings, especially when it is about the increased percentage of facades glazing. The authors of the article assessed the heat loss for heating the windward and leeward facades at average values of the outside air temperature during the heating season in Ukraine. Hence, for constructions higher than 70 m with a calculated wind velocity of 5 m/s, heat losses increase from 10 % to 19 %. Such great difference in heat loss between the windward and leeward walls of the building requires increased thermal protection from the prevailing winter winds. Therefore, when designing multi-storey buildings, it is necessary to take into account changes in wind velocity according to the altitude. The obtained results can be useful both for choosing architectural and planning solutions, like the materials for external enclosing structures and for the objective assessment of the wind protection degree of individual buildings and territories.


1986 ◽  
Vol 61 (6) ◽  
pp. 2252-2259 ◽  
Author(s):  
E. P. Ingenito ◽  
J. Solway ◽  
E. R. McFadden ◽  
B. M. Pichurko ◽  
E. G. Cravalho ◽  
...  

A numerical computer model of heat and water transfer within the tracheobronchial tree of humans was developed based on an integral formulation of the first law of thermodynamics. Simulation results were compared with directly measured intraluminal airway temperature profiles previously obtained in normal human subjects, and a good correlation was demonstrated. The model was used to study aspects of regional pulmonary heat transfer and to predict the outcomes of experiments not yet performed. The results of these simulations show that a decrease in inspired air temperature and water content at fixed minute ventilation produces a proportionately larger increase in heat loss from extrathoracic airways relative to intrathoracic, whereas an increase in minute ventilation at fixed inspired air conditions produces the opposite pattern, with cold dry air penetrating further into the lung, and that changes in breathing pattern (tidal volume and frequency) at fixed minute ventilation and fixed inspiratory-to-expiratory (I/E) ratio do not affect local air temperature profiles and heat loss, whereas changes in I/E ratio at fixed minute ventilation do cause a significant change.


Solar Energy ◽  
2006 ◽  
Author(s):  
Jung Mun ◽  
Moncef Krarti

This paper describes an experimental set-up to evaluate the refrigeration loads for ice rink floors under controlled conditions. The ice-rink set-up was instrumented to measure the temperatures along various locations within the ice-rink floor including the water/ice layer. In addition, the energy used to freeze the water is monitored over the entire charging cycle to evaluate the performance of the ice rink floor for various insulation thermal resistance values (or R-values). Four floor insulation configurations are considered in the experimental analysis of R-0 (no insulation), R-4.2, R-6.7 and R-10 (in IP unit: hr.ft2.°F/Btu). The impact of the air temperature above the ice rink is also evaluated. The experimental results confirm that the addition of the thermal insulation beneath the ice-rink floor reduces the refrigeration load, decreased the time required to freeze the water above the ice rink, and helps maintain lower average ice temperature.


1999 ◽  
Vol 202 (12) ◽  
pp. 1589-1602 ◽  
Author(s):  
S. Ward ◽  
J.M.V. Rayner ◽  
U. Möller ◽  
D.M. Jackson ◽  
W. Nachtigall ◽  
...  

Infrared thermography was used to measure heat transfer by radiation and the surface temperature of starlings (Sturnus vulgaris) (N=4) flying in a wind tunnel at 6–14 m s-1 and at 15–25 degrees C. Heat transfer by forced convection was calculated from bird surface temperature and biophysical modelling of convective heat transfer coefficients. The legs, head and ventral brachial areas (under the wings) were the hottest parts of the bird (mean values 6.8, 6.0 and 5.3 degrees C, respectively, above air temperature). Thermal gradients between the bird surface and the air decreased at higher air temperatures or during slow flight. The legs were trailed in the air stream during slow flight and when air temperature was high; this could increase heat transfer from the legs from 1 to 12 % of heat transfer by convection, radiation and evaporation (overall heat loss). Overall heat loss at a flight speed of 10.2 m s-1 averaged 11. 3 W, of which radiation accounted for 8 % and convection for 81 %. Convection from the ventral brachial areas was the most important route of heat transfer (19 % of overall heat loss). Of the overall heat loss, 55 % occurred by convection and radiation from the wings, although the primaries and secondaries were the coolest parts of the bird (2.2-2.5 degrees C above air temperature). Calculated heat transfer from flying starlings was most sensitive to accurate measurement of air temperature and convective heat transfer coefficients.


2013 ◽  
Vol 2 (2) ◽  
pp. 105-115
Author(s):  
S.J Ojolo ◽  
C.A. Osheku ◽  
M.G Sobamowo

The utilization of biomass for heat and power generation has aroused the interest of most researchers especially those of energy .In converting solid fuel to a usable form of energy,pyrolysis plays an integral role. Understanding this very important phenomenon in the thermochemical conversion processes and representing it with appropriate mathematical models is vital in the design of pyrolysis reactors and biomass gasifiers. Therefore, this study presents analytical solutions to the kinetic and the heat transfer equations that describe the slow pyrolysis of a biomass particle. The effects of Biot number, temperature and residence time on biomass particle decomposition were studied. The results from the proposed analytical models are in good agreement with the reported experimental results. The developed analytical solutions to the heat transfer equations which have been stated to be “analytically involved” showed average percentageerror and standard deviations 0.439 and 0.103 from the experimental results respectively as compared with previous model in literature which gives average percentage error and standard deviations 0.75 and 0.106 from the experimental results respectively. This work is of great importance in the design of some pyrolysis reactors/units and in the optimal design of the biomass gasifiers.


Author(s):  
Atanu Kundu ◽  
Jens Klingmann ◽  
Ronald Whiddon ◽  
Arman Ahamed Subash ◽  
Robert Collin

An investigation on the central-pilot stage of a Siemens Industrial Turbomachinery 4th Generation DLE prototype test burner has been performed to understand the emission performance and operability. The core section, which is defined as RPL (Rich premixed lean) plays an important role for full burner combustion operation by stabilizing the main and pilot flames at different operating condition. Optimal fuel-air flow through the RPL is critical for multiple stages mixing and main flame anchoring. Heat and radical production from the central stage provides the ignition source and required heat for burning the main flame downstream of the RPL section. Surrounding the RPL outside wall cooling air has been blown through an annular passage. The cooling air protects the RPL wall from overheating and provides the oxygen source for the secondary combustion downstream of the RPL. At rich operation unburned hydrocarbon/radicals can pass the RPL and burns by the co-flow air entrainment. To determine the flame stabilization and operability, an atmospheric pressure test has been accomplished using methane as a fuel. Primary flame zone can be identified by a thermocouple placed outside the RPL wall and secondary combustion zone at the exit has been examined by chemiluminescence imaging. Emission measurement and LBO (Lean blow out) limits have been determined for different equivalence ratios from 1.8 to LBO limit. Co-flow air temperature was changed from 303 K to 573 K to evaluate the secondary combustion and RPL wall heat transfer effect on flame stability/emission. It is found that equivalence ratio has strong effect on the RPL flame stabilization (primary/secondary flame). Emissions/radical generation were also influenced by the chemical reaction inside the RPL. It can be noticed that co-flow air temperature has a significant role on emission, LBO and flame stabilization for the central-pilot stage burner due to the heat loss from the flame zone and RPL wall. A chemical kinetic network (Chemkin™) and CFD modelling approaches (Fluent) are employed to understand in detail the chemical kinetics, heat transfer effect and flow field inside the RPL (combustion and heat loss inside and emission capability). Experiment shows that the low CO and NOx levels can be achieved at lean and rich condition due to lower flame temperature. Present experimental results by changing equivalence ratio, residence time and co-flow temperature, creates a complete map for the RPL combustion, which is key input for full 4th Generation DLE burner design.


Sign in / Sign up

Export Citation Format

Share Document