A Review of Microscale Transport in the Thermal Processing of New and Emerging Advanced Materials

2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Yogesh Jaluria ◽  
Jing Yang

This paper reviews the microscale transport processes that arise in the fabrication of advanced materials. In many cases, the dimensions of the device being fabricated are in the micrometer length scale and, in others, underlying transformations that determine product quality and characteristics are at micro- or nanoscale levels. The basic considerations in these transport phenomena are outlined. A few important materials processing circumstances are considered in detail. These include the fabrication of multilayer and hollow optical fibers, as well as those where micro- and nanoscale dopants are added to achieve desired optical characteristics, thin film fabrication by chemical vapor deposition, and microscale coating of fibers and devices. It is shown that major challenges are posed by the simulation and experimentation, as compared with those for engineering or macroscale dimensions. These include accurate simulation to capture large gradients and variations over relatively small dimensions, simulating high pressures and viscous dissipation effects in microchannels, modeling effects such as surface tension that become dominant at microscale dimensions, and coupling micro- and nanoscale mechanisms with boundary conditions imposed at the macroscale. Similarly, measurements over microscale dimensions are much more involved than those over macro- or industrial scales because of difficult access to the regions of interest, relatively small effects such as tension, buoyancy effects, viscous rupture, bubble entrapment, and other mechanisms that are difficult to measure and that can make the process infeasible. It thus becomes difficult to achieve desired accuracy for validating the mathematical and numerical models. This paper reviews some of the approaches that have been adopted to overcome these difficulties. Comparisons between experimental and numerical results are included to show fairly good agreement, indicating the validity of the modeling of transport.

2002 ◽  
Vol 715 ◽  
Author(s):  
P. Sanguino ◽  
M. Niehus ◽  
S. Koynov ◽  
P. Brogueira ◽  
R. Schwarz ◽  
...  

AbstractThe minority-carrier diffusion length in thin silicon films can be extracted from the electrically-detected transient grating method, EDTG, by a simple ambipolar analysis only in the case of lifetime dominated carrier transport. If the dielectric relaxation time, τdiel, is larger than the photocarrier response time, τR, then unexpected negative transient signals can appear in the EDTG result. Thin silicon films deposited by hot-wire chemical vapor deposition (HWCVD) near the amorphous-to-microcrystalline transition, where τR varies over a large range, appeared to be ideal candidates to study the interplay between carrier recombination and dielectric response. By modifying the ambipolar description to allow for a time-dependent carrier grating build-up and decay we can obtain a good agreement between analytical calculation and experimental results.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yinli Xiao ◽  
Zupeng Wang ◽  
Zhengxin Lai ◽  
Wenyan Song

The development of high-performance aeroengine combustion chambers strongly depends on the accuracy and reliability of efficient numerical models. In the present work, a reacting solver with a steady laminar flamelet model and spray model has been developed in OpenFOAM and the solver details are presented. The solver is firstly validated by Sandia/ETH-Zurich flames. Furthermore, it is used to simulate nonpremixed kerosene/air spray combustion in an aeroengine combustion chamber with the RANS method. A comparison with available experimental data shows good agreement and validates the capability of the new developed solver in OpenFOAM.


2010 ◽  
Vol 37 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Vladan Kuzmanovic ◽  
Ljubodrag Savic ◽  
John Stefanakos

This paper presents two-dimensional (2D) and three-dimensional (3D) numerical models for unsteady phased thermal analysis of RCC dams. The time evolution of a thermal field has been modeled using the actual dam shape, RCC technology and the adequate description of material properties. Model calibration and verification has been done based on the field investigations of the Platanovryssi dam, the highest RCC dam in Europe. The results of a long-term thermal analysis, with actual initial and boundary conditions, have shown a good agreement with the observed temperatures. The influence of relevant parameters on the thermal field of RCC dams has been analyzed. It is concluded that the 2D model is appropriate for the thermal phased analysis, and that the boundary conditions and the mixture properties are the most influential on the RCC dam thermal behavior.


Author(s):  
Nianfeng Wang ◽  
Bicheng Chen ◽  
Xiandong Ge ◽  
Xianmin Zhang ◽  
Wenbin Wang

AbstractCrawling robots have elicited much attention in recent years due to their stable and efficient locomotion. In this work, several crawling robots are developed using two types of soft pneumatic actuators (SPAs), namely, an axial elongation SPA and a dual bending SPA. By constraining the deformation of the elastomeric chamber, the SPAs realize their prescribed motions, and the deformations subjected to pressures are characterized with numerical models. Experiments are performed for verification, and the results show good agreement. The SPAs are fabricated by casting and developed into crawling robots with 3D-printing connectors. Control schemes are presented, and crawling tests are performed. The speeds predicted by the numerical models agree well with the speeds in the experiments.


2021 ◽  
Author(s):  
Omar D. Jumaah ◽  
Yogesh Jaluria

Abstract Chemical vapor deposition (CVD) is a widely used manufacturing process for obtaining thin films of materials like silicon, silicon carbide, graphene and gallium nitride that are employed in the fabrication of electronic and optical devices. Gallium nitride (GaN) thin films are attractive materials for manufacturing optoelectronic device applications due to their wide band gap and superb optoelectronic performance. The reliability and durability of the devices depend on the quality of the thin films. The metal-organic chemical vapor deposition (MOCVD) process is a common technique used to fabricate high-quality GaN thin films. The deposition rate and uniformity of thin films are determined by the thermal transport processes and chemical reactions occurring in the reactor, and are manipulated by controlling the operating conditions and the reactor geometrical configuration. In this study, the epitaxial growth of GaN thin films on sapphire (AL2O3) substrates is carried out in two commercial MOCVD systems. This paper focuses on the composition of the precursor and the carrier gases, since earlier studies have shown the importance of precursor composition. The results show that the flow rate of trimethylgallium (TMG), which is the main ingredient in the process, has a significant effect on the deposition rate and uniformity of the films. Also the carrier gas plays an important role in deposition rate and uniformity. Thus, the use of an appropriate mixture of hydrogen and nitrogen as the carrier gas can improve the deposition rate and quality of GaN thin films.


Fibers ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 67 ◽  
Author(s):  
Mukul Paul ◽  
Alexander Kir’yanov ◽  
Yuri Barmenkov ◽  
Mrinmay Pal ◽  
Randall Youngman ◽  
...  

In this paper, we present phase-separated alumina–silica glass-based Er3+-doped optical fibers made by a modified chemical vapor deposition (MCVD) process in combination with a solution doping (SD) technique. The fibers exhibited better optical performance than other silica-based host glasses—both in terms of spectral broadening and flattening of the gain spectra in the C band (1530–1560 nm) region—as well as an improved lifetime. These phase-separated erbium-doped fibers (EDF) promoted longer Er–O bond lengths and also hexa- and penta-coordinated Al3+ ions instead of the fourfold coordination found in non-phase-separated EDF. It was observed that the higher coordination numbers of Er3+ and Al3+ ions in phase-separated glass hosts led to more homogeneous and inhomogeneous broadening, resulting in better flatness of the gain spectrum with 1.2 dB more gain compared to the non-phase-separated EDF.


2021 ◽  
Author(s):  
Marten Klein ◽  
David O. Lignell ◽  
Heiko Schmidt

<p>Turbulence is ubiquitous in atmospheric boundary layers and manifests itself by transient transport processes on a range of scales. This range easily reaches down to less than a meter, which is smaller than the typical height of the first grid cell layer adjacent to the surface in numerical models for weather and climate prediction. In these models, the bulk-surface coupling plays an important role for the evolution of the atmosphere but it is not feasible to fully resolve it in applications. Hence, the overall quality of numerical weather and climate predictions crucially depends on the modeling of subfilter-scale transport processes near the surface. A standing challenge in this regard is the robust but efficient representation of transient and non-Fickian transport such as counter-gradient fluxes that arise from stratification and rotation effects.</p><p>We address the issues mentioned above by utilizing a stochastic one-dimensional turbulence (ODT) model. For turbulent boundary layers, ODT aims to resolve the wall-normal transport processes on all relevant scales but only along a single one-dimensional domain (column) that is aligned with the vertical. Molecular diffusion and unbalanced Coriolis forces are directly resolved, whereas effects of turbulent advection and stratification are modeled by stochastically sampled sequence of mapping (eddy) events. Each of these events instantaneously modifies the flow profiles by a permutation of fluid parcels across a selected size interval. The model is of lower order but obeys fundamental conservation principles and Richardson's 1/4 law by construction.</p><p>In this study, ODT is applied as stand-alone tool in order to investigate nondimensional control parameter dependencies of the scalar and momentum transport in turbulent channel, neutral, and stably-stratified Ekman flows up to (friction) Reynolds number <em>Re</em> = <em>O</em>(10<sup>4</sup>). We demonstrate that ODT is able to capture the state-space statistics of transient surface fluxes as well as the boundary-layer structure and nondimensional control parameter dependencies of low-order flow statistics.<br>Very good to reasonable agreement with available reference data is obtained for various observables using fixed model set-ups. We conclude that ODT is an economical turbulence model that is able to not only capture but also predict the wall-normal transport and surface fluxes in multiphysics turbulent boundary layers.</p>


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1432
Author(s):  
Lev Zakhvatkin ◽  
Alex Schechter ◽  
Eilam Buri ◽  
Idit Avrahami

During aerial missions of fuel-cell (FC) powered drones, the option of FC edge cooling may improve FC performance and durability. Here we describe an edge cooling approach for fixed-wing FC-powered drones by removing FC heat using the ambient air during flight. A set of experiments in a wind tunnel and numerical simulations were performed to examine the efficiency of FC edge cooling at various flight altitudes and cruise speeds. The experiments were used to validate the numerical model and prove the feasibility of the proposed method. The first simulation duplicated the geometry of the experimental setup and boundary conditions. The calculated temperatures of the stack were in good agreement with those of the experiments (within ±2 °C error). After validation, numerical models of a drone’s fuselage in ambient air with different radiator locations and at different flight speeds (10–30 m/s) and altitudes (up to 5 km) were examined. It was concluded that onboard FC edge cooling by ambient air may be applicable for velocities higher than 10 m/s. Despite the low pressure, density, and Cp of air at high altitudes, heat removal is significantly increased with altitude at all power and velocity conditions due to lower air temperature.


2020 ◽  
Author(s):  
Simone Mancini ◽  
Koen Boorsma ◽  
Marco Caboni ◽  
Marion Cormier ◽  
Thorsten Lutz ◽  
...  

Abstract. The disruptive potential of floating wind turbines has attracted the interest of both industry and scientific community. Lacking a rigid foundation, such machines are subject to large displacements whose impact on the aerodynamic performance is not yet fully acknowledged. In this work, the unsteady aerodynamic response to an harmonic surge motion of a scaled version of the DTU10MW turbine is investigated in detail. The imposed displacements have been chosen representative of typical platform motions. The results of different numerical models are validated against high fidelity wind tunnel tests specifically focused on the aerodynamics. Also a linear analytical model, relying on the quasi-steady assumption, is presented as a theoretical reference. The unsteady responses are shown to be dominated by the first surge harmonic and a frequency domain characterization, mostly focused on the thrust oscillation, is conducted involving aerodynamic damping and mass parameters. A very good agreement among codes, experiments and quasi-steady theory has been found clarifying some literature doubts. A convenient way to describe the unsteady results in non-dimensional form is proposed, hopefully serving as reference for future work.


Sign in / Sign up

Export Citation Format

Share Document