An Investigation of Root Stresses of Hypoid Gears with Misalignments

2011 ◽  
Vol 133 (7) ◽  
Author(s):  
M. A. Hotait ◽  
A. Kahraman ◽  
T. Nishino

In this study, the impact of misalignments on root stresses of hypoid gear sets is investigated experimentally and theoretically. An experimental set-up designed to allow operation of a hypoid gear pair under loaded quasi-static conditions with various types of tightly controlled misalignments is introduced. These misalignments include the position errors (V and H) of the pinion along the vertical and horizontal directions, the position error (G) of the gear along its axis, and the angle error (γ) between the two gear axes. For example, face-hobbed hypoid gear pair from an automotive axle application is instrumented via a set of strain gauges positioned at the roots along the faces of multiple teeth to measure root strains within a range of input torque. These root strain measurements at different V, H, G, and γ values are presented. A computational model is also proposed to predict the root stresses of face-milled and face-hobbed hypoid gear pairs under various loading and misalignment conditions. The model employs an automated finite elements mesh generator based on a predefined template for a general and computationally efficient treatment of the problem. Model predictions are compared to measurements at the end to assess the accuracy of the model and describe the measured sensitivities.

Author(s):  
Ata Donmez ◽  
Ahmet Kahraman

Abstract Dynamic response of a gear pair subjected to input and output torque or velocity fluctuations is examined analytically. Such motions are commonly observed in various powertrain systems and identified as gear rattle or hammering motions with severe noise and durability consequences. A reduced-order torsional model is proposed along with a computationally efficient piecewise-linear solution methodology to characterize the system response including its sensitivity to excitation parameters. Validity of the proposed model is established through comparisons of its predictions to measurements from a gear rattle experimental set-up. A wide array of nonlinear behavior is demonstrated through presentation of periodic and chaotic responses in the forms of phase plots, Poincaré maps, and bifurcation diagrams. The severity of the resultant impacts on the noise outcome is also assessed through a rattle severity index defined by using the impact velocities.


Author(s):  
Morimasa Nakamura ◽  
Keisuke Kojima ◽  
Ichiro Moriwaki

Tooth contact inspection is one of the most common methods for checking qualities of hypoid gear pairs. A change in machine setting parameters for cutting and lapping processes of a hypoid gear pair enables a tooth contact pattern of a hypoid gear pair to be varied. The deviation of the pattern from the target one is represented by a grade point. In the inspection, the qualities of hypoid gear pairs are usually classified into only two grades; OK or NG. However, in order to conduct a follow-up survey on problems of the products and to be useful to be trouble shooting tasks of the end products, finer classifications and more quantitative evaluations of tooth contact patterns could be effective. Such approaches have been tried, however, only experienced and well-trained technicians for the inspection of hypoid gear pairs can determine the point of each tooth contact pattern. And it is difficult to make this evaluation method automatic. To overcome this problem, an application of artificial intelligence system must be useful. The present paper describes a computer evaluation system using the neural network, which is a kind of the artificial intelligence systems, for tooth contact patterns of hypoid gear pairs which can evaluate the results of the inspections instead of experienced hypoid gear technicians. This system with the neural network has a capability to learn relationships between evaluation grade points of tooth contact patterns given by the hypoid gear technicians and graphics of tooth contact patterns of hypoid gear pairs. Moreover, it can return the evaluation grade points when a tooth contact pattern is input into the system. The evaluation performance of the developed system was discussed. And a quality of normative tooth contact patterns, which were used as the teacher signals for training the neural network system, greatly affected its performance. The comparison of evaluated grade points obtained from developed system with the technician’s ones showed that the correct answer ratio obtained from the developed system was about 90% in the best case.


1971 ◽  
Vol 93 (4) ◽  
pp. 1275-1279
Author(s):  
I. M. Daniel

A three-dimensional photoelastic analysis using the stress-freezing and slicing techniques was conducted to obtain stress and load distributions in a hypoid gear pair. Precise full-scale plastic models of a gear and pinion were manufactured. A special mounting fixture was designed and built of the same photoelastic plastic as that used for the model. A set-up gage was also designed and manufactured for gaging the gear and pinion settings. Fine adjustments were made by means of shims. The desired contact, calculated to produce maximum fillet stresses, was checked with a marking compound and gaged with a stock-dividing gage. A loading device was used to apply pure torque to the pinion. The assembled model was loaded and taken through the stress-freezing cycle. Subsequently, the teeth under engagement were sliced and analyzed to obtain contact and fillet stress distributions.


Author(s):  
Philip J. Bendeich ◽  
Ondrej Muránsky ◽  
Cory J. Hamelin ◽  
Mike C. Smith ◽  
Lyndon Edwards

Simulation of a dissimilar metal weld (DMW) in a pressurised water reactor (PWR) nozzle was performed to predict both axial distortion and hoop residual stresses in the weld. For this work a computationally efficient axi-symmetric finite element (FE) simulation was carried out rather than a full 3D analysis. Due to the 2-dimensional nature of the analysis it was necessary to examine the effect of structural restraint during welding of the main dissimilar metal weld (DMW). Traditionally this type of analysis is set up to allow one end of the structure, in this case the safe-end forging, to be unrestrained in the axial direction during welding. In reality axial expansion and subsequent contraction of deposited weld metal at the current torch position is restrained by solidified material both ahead and behind the torch. Thus the conventional axi-symmetric analysis is under-restrained in the axial direction at least during the early weld passes. The significance of this was examined by repeating the current simulation with the safe-end forging fixed to limit expansion during the heat up cycle. Contraction was however, allowed during cooling cycle. This modified boundary control method provided a significantly improved prediction of the axial distortion across the weld as well as improved prediction of through wall axial and hoop residual stresses.


Author(s):  
G. D. Snowsill ◽  
C. Young

The technique of pre-swirling cooling air to reduce its relative total temperature, as felt by rotating components, is well established. It is important to optimise the design of such systems in order to achieve maximum cooling effectiveness and to minimise the impact on cycle efficiency. Traditionally, these cooling systems have been developed by a combination of experimental investigation and careful evolution. However, more recently it has become practical to apply CFD to such problems. The nature of gas turbine cooling systems generally mandates the presence of discrete features on both static and rotating components, so that a fully rigorous analysis would need to be both 3D and unsteady, with the sub-domains adjacent to static and rotating surfaces solved in an appropriate frame of reference, together with a suitable interfacing procedure to communicate the evolving solution between each sub-domain. Such analyses are challenging for current CFD codes, both in terms of computation time and numerical stability. The present work explores the various options that are available to make such computations more practical and hence more accessible to the secondary systems modelling community. Significant reductions in set-up time can be achieved by adopting unstructured calculational meshes, although this may be at the expense of some loss of accuracy and increase in computational time relative to structured meshes. In the present work, an attempt has been made to quantify the effect of these choices. Depending on the configuration of the system under investigation, it may be permissible to ignore the unsteady interactions and to model the system using the more computationally efficient multiple reference frame (MRF) approach. Guidelines are proposed for assessing the likely impact of these simplifications on the results obtained.


Author(s):  
Haris Ligata ◽  
Ahmet Kahraman ◽  
Avinash Singh

In this paper, results of an experimental study are presented to describe the impact of certain types of manufacturing errors on gear stresses and the individual planet loads of an n-planet planetary gear set (n = 3 to 6). The experimental set-up includes a specialized test apparatus to operate a planetary gear set under typical speed and load conditions and gear sets having tightly controlled intentional manufacturing errors. The instrumentation system consists of multiple strain gauges mounted on the ring gear and a multi-channel data collection and analysis system. A method for computing the planet load sharing factors from root strain time histories is proposed. Influence of carrier pinhole position errors on gear root stresses are quantified for various error and torque values applied to gear sets having 3 to 6 planets. The results clearly indicate that manufacturing errors influence gear stresses and planet load sharing significantly. Gear sets having larger number of planets are more sensitive to manufacturing errors in terms of planet load sharing behavior.


2018 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Murisal Murisal

Motif and Impact of Early Marriage in Indarung Ngalau Batu Gadang.Penelitian is motivated by teenagers who married early on. Today, young men and women have a tendency to be less prepared to enter the home life, they are only ready to marry (ready here can be interpreted, maturity in terms of financial, understand what the meaning of marriage according to marriage law) is the bond of inner birth between a man and a woman as husband and wife for the purpose of forming a happy and eternal family (household) based on the Supreme Godhead while they are not ready to set up a home, whereas to build a household requires preparation both physically and spiritually . The purpose of this study to determine the motives underlying adolescents to make early marriage and the impact caused in the household as a result of the marriage.


2017 ◽  
Vol 68 (6) ◽  
pp. 1381-1383
Author(s):  
Allia Sindilar ◽  
Carmen Lacramioara Zamfir ◽  
Eusebiu Viorel Sindilar ◽  
Alin Constantin Pinzariu ◽  
Eduard Crauciuc ◽  
...  

Endometriosis is described as a gynecological disorder characterized by the presence of endometrial tissue outside the uterus; extensively explored because of its increasing incidency, with an indubitable diagnostic only after invasive surgery, with no efficient treatment, it has still many aspects to be elucidated. A growing body of facts sustain oxidative stress as a crucial factor between the numerous incriminated factors implicated in endometriosis ethiopathogeny. Reactive oxygen species(ROS) act to decline reproductive function. Our study intends to determine if an experimental model of endometriosis may be useful to assess the impact of oxidative stress on endometrial cells; we have used a murine model of 18 adult Wistar female rats. A fragment from their left uterine horn was implanted in the abdominal wall. After 4 weeks, a laparatomy was performed, 5 endometrial implants were removed, followed by biochemical tissue assay of superoxide dismutase(SOD) and catalase(CAT). At the end of the experiment, the rats were sacrificed, the implants were removed for histopathological exam and biochemical assay of antioxidant enzymes. The results revealed decreased levels of antioxidant enzymes, pointing on significant oxidative stress involvement.


Author(s):  
Mark Burden

Much eighteenth-century Dissenting educational activity was built on an older tradition of Puritan endeavour. In the middle of the seventeenth century, the godly had seen education as an important tool in spreading their ideas but, in the aftermath of the Restoration, had found themselves increasingly excluded from universities and schools. Consequently, Dissenters began to develop their own higher educational institutions (in the shape of Dissenting academies) and also began to set up their own schools. While the enforcement of some of the legal restrictions that made it difficult for Dissenting institutions diminished across the eighteenth century, the restrictions did not disappear entirely. While there has been considerable focus on Dissenting academies and their contribution to debates about doctrinal orthodoxy, the impact of Dissenting schools was also considerable.


The theory of the vibrations of the pianoforte string put forward by Kaufmann in a well-known paper has figured prominently in recent discussions on the acoustics of this instrument. It proceeds on lines radically different from those adopted by Helmholtz in his classical treatment of the subject. While recognising that the elasticity of the pianoforte hammer is not a negligible factor, Kaufmann set out to simplify the mathematical analysis by ignoring its effect altogether, and treating the hammer as a particle possessing only inertia without spring. The motion of the string following the impact of the hammer is found from the initial conditions and from the functional solutions of the equation of wave-propagation on the string. On this basis he gave a rigorous treatment of two cases: (1) a particle impinging on a stretched string of infinite length, and (2) a particle impinging on the centre of a finite string, neither of which cases is of much interest from an acoustical point of view. The case of practical importance treated by him is that in which a particle impinges on the string near one end. For this case, he gave only an approximate theory from which the duration of contact, the motion of the point struck, and the form of the vibration-curves for various points of the string could be found. There can be no doubt of the importance of Kaufmann’s work, and it naturally becomes necessary to extend and revise his theory in various directions. In several respects, the theory awaits fuller development, especially as regards the harmonic analysis of the modes of vibration set up by impact, and the detailed discussion of the influence of the elasticity of the hammer and of varying velocities of impact. Apart from these points, the question arises whether the approximate method used by Kaufmann is sufficiently accurate for practical purposes, and whether it may be regarded as applicable when, as in the pianoforte, the point struck is distant one-eighth or one-ninth of the length of the string from one end. Kaufmann’s treatment is practically based on the assumption that the part of the string between the end and the point struck remains straight as long as the hammer and string remain in contact. Primâ facie , it is clear that this assumption would introduce error when the part of the string under reference is an appreciable fraction of the whole. For the effect of the impact would obviously be to excite the vibrations of this portion of the string, which continue so long as the hammer is in contact, and would also influence the mode of vibration of the string as a whole when the hammer loses contact. A mathematical theory which is not subject to this error, and which is applicable for any position of the striking point, thus seems called for.


Sign in / Sign up

Export Citation Format

Share Document