A Higher Casting and Jump Motions Realized by Robots Using Magnetic Brake Cylinder

2011 ◽  
Vol 3 (4) ◽  
Author(s):  
Eyri Watari ◽  
Hideyuki Tsukagoshi ◽  
Ato Kitagawa ◽  
Takahiro Tanaka

A casting motion or a jumping motion can enhance the traverse ability and agility simultaneously of a mobile robot. This paper describes the development of a novel actuator, based on a pneumatic driving unit, which enables the generation of high-speed motion necessary to realize the motions mentioned above. The proposed actuator, named Magnetic Brake (MB) Cylinder, is composed of a pneumatic cylinder, a permanent magnet, a portable tank, and small valves. The speed of conventional pneumatic cylinders highly depends on the size of the valve which drives it. Since the magnet plays a role to enhance the impulsive release function of pneumatic energy instead of using a big and heavy valve, the pressure inside the cylinder can be kept in high condition, enabling the generation of high velocity with light structure. The height control method of casted objects with the MB Cylinder and its design method are also described in this paper. The analysis of the performance of the MB Cylinder and its simulation method are described for when using the MB Cylinder for both casting motion and jumping motion. After the developed unit is installed on both the casting device and the jumping robot, the validity of the proposed methods is experimentally verified in addition to discussion on its application to rescue operation.

2016 ◽  
Vol 68 (3) ◽  
pp. 325-335 ◽  
Author(s):  
Qunfeng Zeng ◽  
Jinhua Zhang ◽  
Jun Hong ◽  
Cheng Liu

Purpose The purpose of this paper is to design an oil-air lubrication system with low temperature rise, vibration and noise simplifies the spindle configuration. The oil-air lubrication unit is a key component for high-speed grinding machine tools. The development of oil-air lubrication unit suitable for high/ultrahigh rotational speed is a daunting task owing to the lubrication challenges. Design/methodology/approach This paper emphasizes three main issues: the analysis of oil-air two-phase flow for tradition oil-air lubrication unit with the simulation method; the design of new oil-air lubrication unit for the high/ultrahigh-speed grinding machine tools and the comparative experiment research of tradition and new oil-air lubrication unit. The optimum structure parameters that create the optimum flow pattern and operating conditions resulting in low temperature increase, vibration and noise of oil-air lubricated spindle can be achieved by the simulation method and experiments. Findings The simulation and experimental results show that new oil-air lubrication unit lubricating a high speed electric spindle has a better performance with a small temperature increase and vibration, which means that our proposed method is an effective design method for oil-air lubrication system. Originality/value A design method suitable for high-speed oil-air lubrication unit is proposed. New oil-air lubrication unit is expected to apply for high/ultrahigh rotational speed grinding machine tools.


2001 ◽  
Vol 13 (3) ◽  
pp. 238-244
Author(s):  
Atsushi Ohtomo ◽  
◽  
Yasuharu Sasaki

A pneumatic actuator outputs large power in proportion to weight and can be installed in an inexpensive, light and compact configuration. From the standpoint of controllability, however, it is weak due to nonlinearity by compression and delayed transfer of air, it has a problem of poor accuracy in position control. To solve such problem, we propose a hydraulic/pneumatic hybrid actuator that has a pneumatic cylinder and hydraulic cylinder in parallel and uses the hydraulic cylinder as damper. We demonstrate that it can be used in practice and structurally applying it to a manipulator with 2-DOF. It also demonstrates that high-speed and stable control can be achieved by applying optimal control method.


2012 ◽  
Vol 608-609 ◽  
pp. 1587-1593 ◽  
Author(s):  
Zheng Guo Li ◽  
Qiang Zhang ◽  
Kai Zhang

Aiming at the current design research status on large power traction battery formation testing system of electric vehicle, this paper presents a system design method based on the management computer, the control computer and the output computer which is 3 layers construction including superior middle and inferior. In the hardware design, high-performance microcomputer is adopted as the main controller, high speed photo electricity coupling separated circuit is employed as the input and output interface, and pulse width modulation control method is used in control algorithm. In the software design, modular design is used to divide the software system into four function parts: data calculating and processing, data displaying, data storing, parameter setting and regulating.. At last, the data analysis of the system experimental results indicates that this kind of design method has a good application foreground.


Author(s):  
Masanobu Nankyo ◽  
Tadashi Ishihara ◽  
Hikaru Inooka

Increase of deceleration in high-speed and high-density train operation degrades riding comfort and frequently causes wheel skids. This requires an introduction of the control engineering to upgrade the control performance of brake systems on rolling stocks. We are now studying a control method for mechanical brakes that uses friction and pneumatic pressure, including non-linear elements as the basis of brake force. Furthermore, the system itself has certain “dead time”, which is not ignorable and makes controlling difficult. One of our targets is to develop a brake control device that can control deceleration in accordance with a decelerating pattern that optimizes riding comfort and prevents wheel skids. In this paper, a design method of the controller for the deceleration tracking control and the system compensating the dead time are proposed. Finally, the effects of them are confirmed through computer simulations and experimental results.


Aerospace ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 24
Author(s):  
Yi Zhang ◽  
Qiang Shen ◽  
Liqiang Hou ◽  
Shufan Wu

The safety of on-orbit satellites is threatened by space debris with large residual angular velocity and the space debris removal is becoming more challenging than before. This paper explores the non-contact despinning and traction problem of high-speed rotating targets and proposes an eddy current brake and traction technology for space targets without any propellant consumption. The principle of the conventional eddy current brake is analyzed in this article and the concept of eddy current brake and traction without propellant is put forward for the first time. Secondly, according to the key technical requirements, a brand-new structure of a satellite generating artificial magnetic field is designed accordingly. Then the control mechanism of eddy current brake and traction without propellant is analyzed qualitatively by simplifying the model and conditions. Then, the magnetic pulse control method is proposed and analyzed quantitatively. Finally, the feasibility of the technology is verified by the numerical simulation method. According to the simulation results, the eddy current brake and traction technology based on magnetic pulses can make the angular speed of target decrease linearly without propellant during the process. This technology has huge advantages compared with conventional eddy current brake technology in terms of efficiency and reduced propellant consumption.


2021 ◽  
Vol 11 (15) ◽  
pp. 6899
Author(s):  
Abdul Aabid ◽  
Sher Afghan Khan ◽  
Muneer Baig

In high-speed fluid dynamics, base pressure controls find many engineering applications, such as in the automobile and defense industries. Several studies have been reported on flow control with sudden expansion duct. Passive control was found to be more beneficial in the last four decades and is used in devices such as cavities, ribs, aerospikes, etc., but these need additional control mechanics and objects to control the flow. Therefore, in the last two decades, the active control method has been used via a microjet controller at the base region of the suddenly expanded duct of the convergent–divergent (CD) nozzle to control the flow, which was found to be a cost-efficient and energy-saving method. Hence, in this paper, a systemic literature review is conducted to investigate the research gap by reviewing the exhaustive work on the active control of high-speed aerodynamic flows from the nozzle as the major focus. Additionally, a basic idea about the nozzle and its configuration is discussed, and the passive control method for the control of flow, jet and noise are represented in order to investigate the existing contributions in supersonic speed applications. A critical review of the last two decades considering the challenges and limitations in this field is expressed. As a contribution, some major and minor gaps are introduced, and we plot the research trends in this field. As a result, this review can serve as guidance and an opportunity for scholars who want to use an active control approach via microjets for supersonic flow problems.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1540
Author(s):  
Qianqian Ji ◽  
Zhe Gao ◽  
Xingyao Li ◽  
Jian’en Gao ◽  
Gen’guang Zhang ◽  
...  

The Loess Hilly–Gully region (LHGR) is the most serious soil erosion area in the world. For the small watershed with high management in this area, the scientific problem that has been paid attention to in recent years is the impact of the land consolidation project on the erosion environment in the gully region. In this study, the 3D simulation method of vegetation, eroded sediment and pollutant transport was innovated based on the principles of erosion sediment dynamics and similarity theory, and the impacts of GLCP were analyzed on the erosion environment at different scales. The verification results show that the design method and the scale conversion relationship (geometric scale: λl = 100) were reasonable and could simulate the transport process on the complex underlying surface of a small watershed. Compared with untreated watersheds, a significant change was the current flood peak lagging behind the sediment peak. There were two important critical values of GLCP impact on the erosion environment. The erosion transport in HMSW had no change when the proportion was less than 0.85%, and increased obviously when it was greater than 3.3%. The above results have important theoretical and practical significance for watershed simulation and land-use management in HMSW.


Author(s):  
Matteo Facchino ◽  
Atsushi Totsuka ◽  
Elisa Capello ◽  
Satoshi Satoh ◽  
Giorgio Guglieri ◽  
...  

AbstractIn the last years, Control Moment Gyros (CMGs) are widely used for high-speed attitude control, since they are able to generate larger torque compared to “classical” actuation systems, such as Reaction Wheels . This paper describes the attitude control problem of a spacecraft, using a Model Predictive Control method. The features of the considered linear MPC are: (i) a virtual reference, to guarantee input constraints satisfaction, and (ii) an integrator state as a servo compensator, to reduce the steady-state error. Moreover, the real-time implementability is investigated using an experimental testbed with four CMGs in pyramidal configuration, where the capability of attitude control and the optimization solver for embedded systems are focused on. The effectiveness and the performance of the control system are shown in both simulations and experiments.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


Sign in / Sign up

Export Citation Format

Share Document