Investigations on Deformation Behavior of AA5754 Sheet Alloy Under Warm Hydroforming Conditions

Author(s):  
S. Mahabunphachai ◽  
M. Koc ◽  
J. E. Carsley

Material behavior of AA5754 was investigated under different forming process conditions, including two loading conditions (uniaxial tensile and biaxial bulge), several strain rates (constant strain rates at 0.0013 and 0.013/s, and variable strain rate profiles: increasing and decreasing profiles), and several temperature levels (ambient up to 260 °C). Additional warm hydroforming experiments were conducted using a closed-die set up to understand the forming limits of AA5754. The results from tensile and hydraulic bulge tests as well as closed-die hydroforming experiments suggested that, in general, formability of AA5754 can be significantly improved with slow forming rates (<0.02/s), high forming temperature (>200 °C), and biaxial loading (hydroforming) that can delay strain localization (necking). However, the effect of forming rate did not reveal any significant gain in formability for temperatures below 200 °C. The effect of variable strain rate control was found to be significant only at elevated temperatures (>200 °C), where increasing strain rate resulted in lower formability and decreasing strain rate improved the maximum attainable dome height at temperatures above 200 °C. Finally, the material flow curves obtained from the tensile and bulge tests were shown to provide reasonably accurate predictions for cavity filling ratios (∼ 3–15% error) in finite element analyses.

Author(s):  
Muhammad Yasir Khalid ◽  
Zia Ullah Arif ◽  
Waqas Ahmed ◽  
Hassan Arshad

There has been an ever-going need for materials containing excellent mechanical properties, lower density, and improved fuel efficiency in the aerospace industry. To date, Fiber Metal Laminates (FMLs) are a prime choice for aerospace applications. The components of aircraft are subjected to various mechanical loadings under operating conditions; therefore, an in-depth understanding of material behavior under expected loading conditions is imperative for the meticulous design and manufacturing of these components. To evaluate the tensile behavior of the FMLs containing Aluminum 7075-T6 sheets as a metallic phase was the primary aim of this study. Furthermore, the manufactured composites were treated with the processes including surface de-greasing, mechanical abrasion, and anodizing. In order to perform mechanical characterization, uniaxial tensile tests were conducted at various strain rates 2×10−4 s−1, 5×10−4 s−1 and 8×10−4 s−1. The FMLs were fabricated through vacuum-assisted resin transfer molding (VARTM) process. The results revealed that FMLs based different combinations of the fiber and metal constituents exhibited a low degree of strain rate-sensitivity. In the case of CARALL, 1.7% increase in tensile strength was observed, and, its tensile strength was increased from 741 MPa to 754 MPa. Whereas, ARALL and GLARE laminates exhibited high degree of strain rate-sensitivity. When the strain rate is increased from 2×10−4 s−1, 5×10−4 s−1 and 8×10−4 s−1 the values are increased in the following patterns: 389 MPa, 411 MPa, and 475 MPa for GLARE laminates, and 253 MPa, 298 MPa 352 MPa for ARALL laminates. Thus, 39% and 22% increase in the tensile strengths were noted for ARALL and GLARE laminates, respectively.


2013 ◽  
Vol 549 ◽  
pp. 311-316 ◽  
Author(s):  
Marion Merklein ◽  
Hinnerk Hagenah ◽  
Markus Kaupper ◽  
Adam Schaub

Due to beneficial characteristics such as high specific strength, corrosion resistance and biocompatibility Ti-6Al-4V alloy has become the most important industrially produced titanium alloy during the last decades. Commonly used for aerospace technology and medical products, nowadays Ti-6Al-4V covers 50% of the worldwide produced titanium alloy parts. Different deformation operations as forging and casting as well as machining are used to shape titanium alloy components. For sheet metals, cost and time of fabrication can be reduced significantly via the near net shape technology sheet metal forming. Materials such as the α + β alloy Ti-6Al-4V with high yield stress and comparatively low elastic modules need to be formed at elevated temperatures to increase their formability. Numerical simulations are applied to calculate the forming behavior during the process and conclude the characteristics of the shaped part. Therefore in this paper the mechanical behavior of this titanium alloy is investigated by uniaxial tensile test within elevated temperatures ranging from 250 to 500 °C. Finally, the experimental results are adapted to models which predict the flow response in order to describe material behavior in finite element analysis of the forming process.


2011 ◽  
Vol 82 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Xuehui Gan ◽  
Jianhua Yan ◽  
Bohong Gu ◽  
Baozhong Sun

The uniaxial tensile properties of 4-step 3D braided E-glass/epoxy composites under quasi-static and high-strain rate loadings have been investigated to evaluate the tensile failure mode at different strain rates. The uniaxial tensile properties at high strain rates from 800/s to 2100/s were tested using the split Hopkinson tension bar (SHTB) technique. The tensile properties at quasi-static strain rate were also tested and compared with those in high strain rates. Z-transform theory is applied to 3D braided composites to characterize the system dynamic behaviors in frequency domain. The frequency responses and the stability of 3D braided composites under quasi-static and high-strain rate compression have been analyzed and discussed in the Z-transform domain. The results indicate that the stress-strain curves are rate sensitive, and tensile modulus, maximum tensile stress and corresponding tensile strain are also sensitive to the strain rate. The tensile modulus, maximum tensile stress of the 3D braided composites are linearly increased with the strain rate. With increasing of the strain rate (from 0.001/s to 2100/s), the tensile failure of the 3D braided composite specimens has a tendency of transition from ductile failure to brittle failure. The magnitude response and phase response is very different in quasi-static loading with that in high-strain rate loading. The 3D braided composite system is more stable at high strain rate than quasi-static loading.


2015 ◽  
Vol 18 (2) ◽  
pp. 149-158
Author(s):  
Thien Tich Truong ◽  
Long Thanh Nguyen ◽  
Binh Nguyen Thanh Vu ◽  
Hien Thai Nguyen

Magnesium alloy is one of lightweight alloys has been studied more extensively today. Because weight reduction while maintaining functional requirements is one of the major goals in industries in order to save materials, energy and costs, etc. Its density is about 2/3 of aluminum and 1/4 of steel.The material used in this study is commercial AZ31B magnesium alloy sheet which includes 3% Al and 1% Zn. However, due to HCP (Hexagonal Close Packed) crystal structure, magnesium alloy has limited ductility and poor formability at room temperature. But its ductility and formability will be improved clearly at elevated temperature. From the data of tensile testing, the constitutive equations of AZ31B was approximated using the Ramgberg-Osgood model with temperature dependent parameters to fit in the experiment results in tensile test. Yield locus are also drawn in plane stress σ1- σ2 with different yield criteria such as Hill48, Drucker Prager, Logan Hosford, Y. W. Yoon 2013 and particular Barlat 2000 criteria with temperature dependent parameters. Applying these constitutive equations were determined at various temperatures and different strain rates, the finite element simulation stamping process for AZ31B alloy sheet by software PAM- STAMP 2G 2012, to verify the model materials and the constitutive equations.


Author(s):  
M. Anthony Xavior ◽  
Prashantha Kumar Hosamane ◽  
Jeyapandiarajan Paulchamy

In fabrication of high strength materials coupled with improved mechanical properties; focus on integration of multifunctional reinforcements are increasing along with novel processing methods. Single layer 2-D material Graphene are among one such novel material with huge aspect ratio, posse’s high strength. But the real challenge is processing and incorporation of these reinforcements with appropriate content in metals or its alloys matrix. Current research work focus to study the anisotropic behavior on addition of pristine Graphene/MWCNT and processing methods like ball milling under constant ball to powder precursor ratio (BPR) of AA 2024 nanocomposites. The extent change in aspect ratio, size of the nanoparticle mixtures during ball milling were analyzed under SEM and Raman spectroscopy. Thus obtained (ball milled) precursors are consolidated through vacuum hot press and hot extruded to get typical flat specimen at optimized processing parameters. XRD analysis, relative density and hardness measurement is done on extruded composites. Thus developed composites are subjected to study the anisotropic behavior at various orientations and strain rates (0.5, 1.0, 1.5 mm/min) using uniaxial tensile testing instrument and corresponding stress strains graphs were obtained. The fracture surfaces were characterized by scanning electron microscope (SEM) and its shows the nucleation of the dimple size are varies with increasing the strain rate and also deeper dimple size were noticed. Negative strain sensitivity were observed for the lower strain rate (0.1 and 0.3 mm/min) and positive strain sensitivity for higher strain rates. Microstructural anisotropy infers that AA2024-Graphene/MWCNT composites are sensitive to strain rate and shear type of failure is observed on increasing the strain rate.


2021 ◽  
Author(s):  
Adanma Akoma ◽  
Kevin Sala ◽  
Chase Sheeley ◽  
Lesley D. Frame

Abstract Determination of flow stress behavior of materials is a critical aspect of understanding and predicting behavior of materials during manufacturing and use. However, accurately capturing the flow stress behavior of a material at different strain rates and temperatures can be challenging. Non-uniform deformation and thermal gradients within the test sample make it difficult to match test results directly to constitutive equations that describe the material behavior. In this study, we have tested AISI 9310 steel using a Gleeble 3500 physical simulator and Digital Image Correlation system to capture transient mechanical properties at elevated temperatures (300°C – 600°C) while controlling strain rate (0.01 s-1 to 0.1 s-1). The data presented here illustrate the benefit of capturing non-uniform plastic strain of the test specimens along the sample length, and we characterize the differences between different test modes and the impact of the resulting data that describe the flow stress behavior.


1980 ◽  
Vol 26 (94) ◽  
pp. 275-282 ◽  
Author(s):  
Hidek Narita

AbstractThe mechanical behaviour of snow was studied at — 10°C under uniaxial tensile stress in a range of cross-head speed 6.8 × 10–8to 3.1 × 10–4ms–1and snow density 240-470 kg m–3.It was found from the resisting force-deformation curves that the snow was deformed in two different ways: namely, brittle and ductile deformation at high and low strain-rates, respectively. The critical strain-rate dividing the two deformation modes was found to depend on the density of snow. In ductile deformation, many small cracks appeared throughout the entire specimen. Their features were observed by making thin sections and they were compared with small cracks formed in natural snow on a mountain slope.The maximum strength of snow was found to depend on strain-rate: at strain-rates above about 10–5s–1, the maximum strength increased with decreasing strain-rate but below 10–5s–1it decreased with decreasing strain-rate.


Author(s):  
Suhui Wang ◽  
Chunlei Xie ◽  
Le Ye ◽  
Xin Wu

Under thermally activated deformation conditions many engineering metals (steels, aluminum and magnesium alloys) exhibit much enhanced formability; thus, thermal forming has received increasing interests by automotive industries. The thermally activated material constitutive behaviors are not only strain dependent, but also strain rate and temperature dependent, and it is sensitive to in-situ microstructure evolution. In addition, non-steady-state deformation at a high strain rate (in the order of 10−2s−1 or above) introduces additional challenges in forming simulation. In this case, von Mises based macroscopic plasticity are often not sufficient to describe material behaviors with complex thermomechanical history. In this paper, the rate-dependent crystal plasticity model [1] was applied to the high temperature and high strain rate deformation that is dominated by dislocation creep. A user material subroutine was developed and used for FEA metal forming simulation using commercial ABAQUS/Dynamic code. In the simulation, material behavior was computed based on crystal plasticity at each strain increment without using von-Mises equation or a look-up table of material testing data. By inputting different slip systems or their combinations, and by matching the predicted crystallographic textures with experimentally obtained ones, the active slip systems responsible for the deformation was identified. Then, the material parameters were best fitted to the tensile curves obtained at various strain rates and temperatures. The model was applied for more complex multi-axial metal forming processes. The material behavior, along with its crystallographic texture development, was obtained and validated. As a demonstration, this paper also provides an analysis of a newly developed thrmal forming process [2] with this meso-scale crystal plasticity approach. This forming process involves diameter expansion of a tubular workpiece under combined internal pressure and axial loading and at elevated temperatures.


2017 ◽  
Vol 892 ◽  
pp. 89-96 ◽  
Author(s):  
Thorsten Henseler ◽  
Madlen Ullmann ◽  
Grzegorz Korpala ◽  
Klaudia Klimaszewska ◽  
Rudolf Kawalla ◽  
...  

This article demonstrates the difference in the flow curves of an AZ31 magnesium alloy and S235JR structural steel wire caused by non-linear strain rates during uniaxial tensile and compression testing at elevated temperatures. Throughout tensile deformation, the traverse velocity of the testing machine has to be adapted according to the current elongation of the specimen, thus accelerating, to ensure a constant strain rate during the admission of the stress-strain curve. The equivalent is necessary during compression testing, where the traverse velocity of the testing machine needs to decelerate ensuring a constant strain rate. Nevertheless, tensile and compression tests are performed with constant traverse velocity, which lead to divergent flow curves in comparison to deformation controlled traverse velocities. The results of the research show the difference in flow behaviour of magnesium and steel wire, when the temperature and strain rate are varied in conjunction with constant and deformation controlled traverse velocities.


1980 ◽  
Vol 26 (94) ◽  
pp. 275-282 ◽  
Author(s):  
Hidek Narita

AbstractThe mechanical behaviour of snow was studied at — 10°C under uniaxial tensile stress in a range of cross-head speed 6.8 × 10–8 to 3.1 × 10–4 ms–1 and snow density 240-470 kg m–3.It was found from the resisting force-deformation curves that the snow was deformed in two different ways: namely, brittle and ductile deformation at high and low strain-rates, respectively. The critical strain-rate dividing the two deformation modes was found to depend on the density of snow. In ductile deformation, many small cracks appeared throughout the entire specimen. Their features were observed by making thin sections and they were compared with small cracks formed in natural snow on a mountain slope.The maximum strength of snow was found to depend on strain-rate: at strain-rates above about 10–5 s –1, the maximum strength increased with decreasing strain-rate but below 10–5 s–1 it decreased with decreasing strain-rate.


Sign in / Sign up

Export Citation Format

Share Document