Stresses Due to Tangential and Normal Loads on an Elastic Solid With Application to Some Contact Stress Problems

1953 ◽  
Vol 20 (2) ◽  
pp. 157-166
Author(s):  
J. O. Smith ◽  
Chang Keng Liu

Abstract The results of two-dimensional approach using real variable method to Hertz’s problem of contact of elastic bodies are presented. Both normal and tangential loads are assumed to be distributed in Hertzian fashion over the area of contact. The magnitude of the intensity of the tangential load is assumed to be linearly proportional to that of the normal load when sliding motion of the body is impending. The stresses in the elastic body due to the application of these loads on its boundary are presented in closed form for both plane-stress and plane-strain cases. A numerical value of f = 1/3 is assumed for the linear proportionality (coefficient of friction) between the tangential and normal loads in order that the distribution of stresses may be illustrated. The significance of the stress distribution, across the contact area and in the body, is also discussed. It is shown that when the combination of loads considered in the paper are applied at the contact area of bodies in contact the maximum shearing stress may be at the surface instead of beneath the surface. For example, for plane strain, if the coefficient of friction is f = 1/3, the maximum shearing stress is at the surface and is 43 per cent larger than the maximum shearing stress, which would be below the surface, that occurs when the normal force acts alone. The effect of range of normal stress and of shearing stress on the plane of maximum shear and on the plane of maximum octahedral shear on failure by progressive fracture (fatigue) is discussed.

Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


2013 ◽  
Vol 10 (80) ◽  
pp. 20120467 ◽  
Author(s):  
Michael J. Adams ◽  
Simon A. Johnson ◽  
Philippe Lefèvre ◽  
Vincent Lévesque ◽  
Vincent Hayward ◽  
...  

Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function.


Author(s):  
Kali Dass ◽  
SR Chauhan ◽  
Bharti Gaur

An experimental study has been carried out to investigate the mechanical and tribological characteristics of chopped carbon fiber (CCF) reinforced epoxy composites filled with nano-Al2O3 particulates, as a function of fiber and filler contents. The experiments were conducted using a pin-on-disc wear test apparatus under dry sliding conditions. The coefficient of friction and specific wear rate of these composites was determined as a function of applied normal load, sliding velocity, sliding distance, and reinforcement content. The tensile, flexural, and compression strengths of ortho cresol novalac epoxy and chopped carbon fiber (OCNE/CCF) filled composites are found to be within the ranges of 48–58.54 MPa, 115–156.56 MPa, and 48–61.15 MPa. Whereas the tensile, flexural, and compression strengths of OCNE/CCF/Al2O3-filled composites are found to be within the ranges of 96–110 MPa, 176–204.66 MPa, and 72–85.65 MPa, respectively. It has been observed that the coefficient of friction decreases and specific wear rate increases with increase in the applied normal loads. Further increases in the fiber (6 wt%) and particle (3 wt%) contents in the epoxy matrix resulted in a decrease of both the mechanical and tribological properties, but remains above that of the CCF reinforced epoxy composites. The worn surfaces of composites were examined with scanning electron microscopy equipped with energy dispersion X-ray analyzer and X-ray diffraction analysis technique to investigate the wear mechanisms.


Author(s):  
H.-S. Zhang ◽  
K. Komvopoulos

Silicon wafers were exposed to an oblique Ar+ ion beam to create arrays of surface ripples. Atomic force microscope (AFM) imaging revealed that the rippled (textured) surfaces exhibited highly anisotropic morphologies. Nanoscale friction experiments performed with different diamond tips illustrated a dependence of the coefficient of friction on tip radius, normal load, and sliding direction. Changes in the coefficient of friction are interpreted in terms of the applied normal load and varying contributions of the adhesion friction mechanism.


2014 ◽  
Vol 474 ◽  
pp. 303-308 ◽  
Author(s):  
Eva Labašová

The coefficient of friction for the bronze material (CuZn25Al6) with inset graphite beds is investigated in the present paper. Friction coefficient was investigated experimentally by the testing machine Tribotestor`89 which uses the principle of the ring on ring method. Tribotestor`89 machine may be classed to the rotary tribometers. The tested sliding pairs were of the same material. The internal bushing performed a rotational movement with constant sliding speed (v = 0.8 m s-1). The external fixed bushing was exposed to the normal load, which was of different sizes and different variations. Process of load was increased from level 50 N to 200 N (400 N, 600 N) during run up 600 s, after the run up the appropriate level of load was held.The forth test had a rectangular shape of loading with direct current component 400 N and the amplitude 200 N period 600 s, the whole test took 1800 s. The obtained results reveal that friction coefficient decreases with the increase of normal load. Further, that the coefficient of friction was found smaller at constant load, as compared to rectangular shape of loading.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4886
Author(s):  
Agnieszka Lenart ◽  
Pawel Pawlus ◽  
Andrzej Dzierwa ◽  
Slawomir Wos ◽  
Rafal Reizer

Experiments were conducted using an Optimol SRV5 tester in lubricated friction conditions. Steel balls from 100Cr6 material of 60 HRC hardness were placed in contact with 42CrMo4 steel discs of 47 HRC hardness and diversified surface textures. Tests were carried out at a 25–40% relative humidity. The ball diameter was 10 mm, the amplitude of oscillations was set to 0.1 mm, and the frequency was set to 80 Hz. Tests were performed at smaller (45 N) and higher (100 N) normal loads and at smaller (30 °C) and higher (90 °C) temperatures. During each test, the normal load and temperature were kept constant. We found that the disc surface texture had significant effects on the friction and wear under lubricated conditions. When a lower normal load was applied, the coefficient of friction and wear volumes were smaller for bigger disc surface heights. However, for a larger normal load a higher roughness corresponded to a larger coefficient of friction.


Author(s):  
Palash Roy Choudhury ◽  
Korimilli Eswar Prasad ◽  
John K. Schueller ◽  
Abhijit Bhattacharyya

Tribological characteristics of boron modified as-cast Ti6Al4V alloys are not very well known, but these alloys enjoy improved as-cast mechanical properties and favourable manufacturing economy. Experimental results are reported here for the effects of sliding speed and normal load on the wear rate and the coefficient of friction in dry sliding of these alloys on hardened EN 31 steel. Alloys having 0%, 0.30%, and 0.55% boron by weight were tested. A full factorial experiment assessed the effects of boron content, speed, and load on wear and friction. Interactions between speed and load were found to be statistically significant in influencing the wear rate and the coefficient of friction. Regression models are developed to predict the wear rate and coefficient of friction responses. The developed contour plots can assist designers in choosing operating conditions when selecting these alloys even if the wear mechanisms are unknown. Evidence shows that the wear resistance of Ti6Al4V can be improved by boron addition, and wear regimes are sensitive to boron content.


2011 ◽  
Vol 2 (1) ◽  
pp. 19-28
Author(s):  
F. Al-Bender ◽  
K. De Moerlooze

In this age of virtual design, high-performance machines, and precise motion control, the abilityto characterize friction and wear processes and then to model and simulate them, becomes a pertinentissue. This communication gives a condensed overview of the generic characteristics of friction, thereafter,generic models, developed at KULeuven, PMA, are presented and discussed.with Leuven Air Bearings N.V. since Sept. 2010In regard to friction, both sliding and rolling are considered. The characterization concerns (i) therelationship between the friction (traction) force and the state of sliding of the system (displacement,velocity,…), at a given normal load; (ii) the relationship between the coefficient of friction and the normalload.As regards frictional behaviour in function of sliding (rolling) state, the main features are: (i) pre-sliding (prerolling) hysteresis and (ii) gross-sliding (rolling) dynamics. Models are presented that capture those featuresand relate them to the contact characteristics. Comparison with experimental results is also presented forthe main features. Secondly, the dependence of the coefficient of friction on the normal load is identifiedand modelled.Finally, regarding wear simulation, the generic friction model is extended to cater for an asperity populationthat changes during the lifetime of sliding. Based on fatigue considerations, asperities get broken after acertain number of contact cycles, and are replaced by smaller ones. With the aid of this model, we try tocorrelate energy dissipation with wear evolution, and support that by experimental observation.


2010 ◽  
Vol 26-28 ◽  
pp. 320-325 ◽  
Author(s):  
Li Li Wang ◽  
Dong Sheng Li ◽  
Xiao Qiang Li ◽  
Liang Wang ◽  
Wei Jun Yang

Stretch forming process of aircraft skin over reconfigurable compliant tooling is a new technology in skin manufacturing. During this process, the coefficient of friction is important for modeling accurately the process of stretch forming. The objective of this research is to measure the coefficient of friction for aluminum alloy in contact with polyurethane rubber in reciprocal sliding. An orthogonal experimental design was used to reveal the impact of four factors on the coefficient of friction, including lubrication, normal load, aluminum alloy material and sliding velocity. It is shown that lubrication is a major factor, sliding velocity is a minor factor. The influence of normal pressure is less than sliding velocity and the influence of aluminum alloy material is not very obvious. Finally, based on the experiment results, the selections of lubricant and stretching velocity are discussed in order to improve the process of stretch forming.


Sign in / Sign up

Export Citation Format

Share Document