A Numerical Study of Aortic Flow Stability and Comparison With In Vivo Flow Measurements

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
C. A. Kousera ◽  
N. B. Wood ◽  
W. A. Seed ◽  
R. Torii ◽  
D. O'Regan ◽  
...  

The development of an engineering transitional turbulence model and its subsequent evaluation and validation for some diseased cardiovascular flows have been suggestive of its likely utility in normal aortas. The existence of experimental data from human aortas, acquired in the early 1970s with catheter-mounted hot film velocimeters, provided the opportunity to compare the performance of the model on such flows. A generic human aorta, derived from magnetic resonance anatomical and velocity images of a young volunteer, was used as the basis for varying both Reynolds number (Re) and Womersley parameter (α) to match four experimental data points from human ascending aortas, comprising two with disturbed flow and two with apparently undisturbed flow. Trials were made with three different levels of inflow turbulence intensity (Tu) to find if a single level could represent the four different cases with 4000 < Re < 10,000 and 17 < α < 26. A necessary boundary condition includes the inflow “turbulence” level, and convincing results were obtained for all four cases with inflow Tu = 1.0%, providing additional confidence in the application of the transitional model in flows in larger arteries. The Reynolds-averaged Navier–Stokes (RANS)-based shear stress transport (SST) transitional model is capable of capturing the correct flow state in the human aorta when low inflow turbulence intensity (1.0%) is specified.

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
F. P. P. Tan ◽  
N. B. Wood ◽  
G. Tabor ◽  
X. Y. Xu

In this study, two different turbulence methodologies are investigated to predict transitional flow in a 75% stenosed axisymmetric experimental arterial model and in a slightly modified version of the model with an eccentric stenosis. Large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) methods were applied; in the LES simulations eddy viscosity subgrid-scale models were employed (basic and dynamic Smagorinsky) while the RANS method involved the correlation-based transitional version of the hybrid k-ε/k-ω flow model. The RANS simulations used 410,000 and 820,000 element meshes for the axisymmetric and eccentric stenoses, respectively, with y+ less than 2 viscous wall units for the boundary elements, while the LES used 1,200,000 elements with y+ less than 1. Implicit filtering was used for LES, giving an overlap between the resolved and modeled eddies, ensuring accurate treatment of near wall turbulence structures. Flow analysis was carried out in terms of vorticity and eddy viscosity magnitudes, velocity, and turbulence intensity profiles and the results were compared both with established experimental data and with available direct numerical simulations (DNSs) from the literature. The simulation results demonstrated that the dynamic Smagorinsky LES and RANS transitional model predicted fairly comparable velocity and turbulence intensity profiles with the experimental data, although the dynamic Smagorinsky model gave the best overall agreement. The present study demonstrated the power of LES methods, although they were computationally more costly, and added further evidence of the promise of the RANS transition model used here, previously tested in pulsatile flow on a similar model. Both dynamic Smagorinsky LES and the RANS model captured the complex transition phenomena under physiological Reynolds numbers in steady flow, including separation and reattachment. In this respect, LES with dynamic Smagorinsky appeared more successful than DNS in replicating the axisymmetric experimental results, although inflow conditions, which are subject to caveats, may have differed. For the eccentric stenosis, LES with Smagorinsky coefficient of 0.13 gave the closest agreement with DNS despite the known shortcomings of fixed coefficients. The relaminarization as the flow escaped the influence of the stenosis was amply demonstrated in the simulations, graphically so in the case of LES.


1994 ◽  
Vol 116 (4) ◽  
pp. 202-208 ◽  
Author(s):  
K. Nakajima ◽  
Y. Kallinderis ◽  
I. Sibetheros ◽  
R. W. Miksad ◽  
K. Lambrakos

A numerical study of the nonlinear and random behavior of flow-induced forces on offshore structures and experimental verification of the results are presented. The numerical study is based on a finite-element method for the unsteady incompressible Navier-Stokes equations in two dimensions. The momentum equations combined with a pressure correction equation are solved employing fourth-order artificial dissipation with a nonstaggered grid, instead of the more commonly used staggered meshes. The solution is advanced in time with a combined explicit and implicit marching scheme. Emphasis is placed on study of reversing flows around a cylinder. Comparisons with experimental data evaluate accuracy and robustness of the method.


2009 ◽  
Vol 297 (1) ◽  
pp. H163-H170 ◽  
Author(s):  
Xiao Liu ◽  
Fang Pu ◽  
Yubo Fan ◽  
Xiaoyan Deng ◽  
Deyu Li ◽  
...  

It has been proposed that a mass transfer phenomenon called concentration polarization of low-density lipoproteins (LDLs) may occur in the arterial system and is likely involved in the localization of atherogenesis. To test the hypothesis that concentration polarization of LDL may be suppressed by the helical flow pattern in the human aorta, hence sparing the ascending aorta from atherosclerosis, the effects of aortic torsion, branching, curvature, and taper on blood flow and LDL transport in the lumen were simulated numerically under steady-state flow conditions using four aorta models constructed based on in vivo MRI slices. The results showed that it was the aortic torsion that induced the helical flow in the aortic arch, stabilizing the flow of blood in the aorta, and compensated the adverse effects of the aortic curvature on blood flow and LDL transport. The helical flow reduced the luminal surface LDL concentration in the aortic arch and probably played a role in suppressing severe polarization of LDL at the entrances of the three branches on the arch, hence, protecting them from atherogenesis. The taper of the aorta was another important feature of the aorta that further stabilized the flow of blood and delayed the attenuation of the helical flow, making it move beyond the arch and into the beginning part of the descending aorta. The results therefore may account for why the ascending aorta and the arch are relatively free of atherosclerosis.


Author(s):  
Christopher W. Robak ◽  
Amir Faghri ◽  
Karen A. Thole

Abstract Turbine rim cavities require an adequate supply of cooling purge flow to prevent hot gas ingestion from overheating metal components beneath the gas path airfoils. Purge flow is typically introduced into rim cavities through a labyrinth seal at the inner diameter of the cavity, or through conduits in the metal walls of the rim cavity. This numerical study will focus on purge flow introduced through axial holes in the stationary side of a turbine realistic rim cavity. Three dimensional Unsteady Reynolds-average Navier-Stokes (URANS) CFD modeling is utilized to model of cavity sealing effectiveness as a function of axial purge flow rate. CFD modeling is compared with experimental data from the test turbine in the Steady Thermal Aero Research Turbine (START). Results show good agreement with experimental data, especially at lower purge flow rates. Analytical depictions of the flow field setup in the rim cavity are provided, explaining trends observed in experimental data. Differences in sealing effectiveness trends between the upper and lower portions of the rim cavity are predicted by CFD modeling, adding insight to ingestion phenomena in turbine realistic rim cavities with complex geometry and flow leakage paths.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2256 ◽  
Author(s):  
Matias Quezada ◽  
Aldo Tamburrino ◽  
Yarko Niño

The scour around cylindrical piles due to codirectional and opposite waves and currents is studied with Reynolds Averaged Navier–Stokes (RANS) equations via REEF3D numeric modeling. First, a calibration process was made through a comparison with the experimental data available in the literature. Subsequently, not only the hydrodynamics, but also the expected scour for a set of scenarios, which were defined by the relative velocity of the current ( U C W ), were studied numerically. The results obtained show that the hydrodynamics around the pile for codirectional or opposite waves and currents not have significant differences when analyzed in terms of their velocities, vorticities and mean shear stresses, since the currents proved to be more relevant compared to the net flow. The equilibrium scour, estimated by the extrapolation of the numerical data with the equation by Sheppard, enabled us to estimate values close to those described in the literature. From this extrapolation, it was verified that the dimensionless scour would be less when the waves and currents are from opposite directions. The U C W parameter is an indicator used to adequately measure the interactions between the currents and waves under conditions of codirectional flow. Nevertheless, it is recommended to modify this parameter for currents and waves in opposite directions, and an equation is proposed for this case.


2021 ◽  
Vol 9 (11) ◽  
pp. 1274
Author(s):  
Artur K. Lidtke ◽  
Maarten Klapwijk ◽  
Thomas Lloyd

Inflow turbulence is relevant for many engineering applications relating to noise generation, including aircraft wings, landing gears, and non-cavitating marine propellers. While modelling of this phenomenon is well-established for higher Mach number aerospace problems, lower Mach number applications, which include marine propellers, still lack validated numerical tools. In order to develop these simplified cases for which extensive measurement data are available can be used. This paper investigates the effect of inflow turbulence on a circular cylinder at a Reynolds number of 14,700, a Mach number of 0.029, and with inflow turbulence intensities ranging between 0% and 22%. In the present work focus is put on the hydrodynamics aspect, with the aim of addressing radiated noise in a later study. The flow is simulated using the partially averaged Navier Stokes equations, with turbulence inserted using a synthetic inflow turbulence generator. Results show that the proposed method can successfully replicate nearfield pressure variations and relevant flow features in the wake of the body. In agreement with the literature, increasing inflow turbulence intensity adds broadband frequency content to all the presented fluctuating flow quantities. In addition, the applied variations in inflow turbulence intensity result in a major shift in flow dynamics around a turbulence intensity of 15%, when the dominant effect of von Kármán vortices on the dominant flow dynamics becomes superseded by freestream turbulence.


Author(s):  
Guilherme Vaz ◽  
Christophe Mabilat ◽  
Remmelt van der Wal ◽  
Paul Gallagher

The objective of this paper is to investigate several numerical and modelling features that the CFD community is currently using to compute the flow around a fixed smooth circular cylinder. Two high Reynolds numbers, 9 × 104 and 5 × 105, are chosen which are in the so called drag-crisis region. Using a viscous flow solver, these features are assessed in terms of quality by comparing the numerical results with experimental data. The study involves grid sensitivity, time step sensitivity, the use of different turbulence models, three-dimensional effects, and a RANS/DES (Reynolds Averaged Navier Stokes, Detached Eddy Simulation) comparison. The resulting drag forces and Strouhal numbers are compared with experimental data of different sources. Major flow features such as velocity and vorticity fields are presented. One of the main conclusions of the present study is that all models predict forces which are far from the experimental values, particularly for the higher Reynolds numbers in the drag-crisis region. Three-dimensional and unsteadiness effects are present, but are only fully captured by sophisticated turbulence models or by DES. DES seems to be the key to better solve the flow problem and obtain better agreement with experimental data. However, its considerable computational demands still do not allow to use it for engineering design purposes.


2019 ◽  
Vol 9 (6) ◽  
pp. 1216 ◽  
Author(s):  
Marwa Selmi ◽  
Hafedh Belmabrouk ◽  
Abdullah Bajahzar

In this work, we present a numerical investigation of blood flow in a portion of the human vascular system. More precisely, the present work analyzed the blood flow in the upper portion of the aorta. The aorta and its ramified blood vessels are surrounded by the cardiac muscle. The blood flow generates pressure on the internal surfaces of the artery and its ramifications, thereby causing deformation of the cardiac muscle. The numerical analysis used the Navier–Stokes equations as the governing equations of blood flow for the calculation of the velocity field and pressure distribution in the blood. The neo-Hookean hyperelastic model was used for the description of the behavior of the vessel walls. The velocity and pressure distributions were analyzed. The deformation of the vessel was also investigated. The numerical results could be used to better understand and predict the factors that trigger cardiovascular diseases and distortions of the aorta and as a diagnostic tool in clinical applications.


Author(s):  
Ashis Mookerjee ◽  
Ahmed Al-Jumaily ◽  
Andrew Lowe

A physiologically-correct mathematical model of blood flow in the human aorta is developed from previously reported experimental data. The blood is assumed as a viscous fluid flowing through a compliant tube. This phenomenon is modeled by combining the Navier-Stokes’ equations and Laplace Law. The model is validated using experimental data collected at a leading specialist catheterisation laboratory. The mathematical model is then manipulated to derive a pressure transfer function between the aortic pressure and the pressure at the iliac bifurcation. The results of a comprehensive senstivity analysis carried out on this transfer function are discussed in this article. This study indicates that Coriolis and viscous effects insignificantly affect the wave propagation characteristics. The effect of arterial tapering on the transfer function is also recorded as insignificant. Changing the stiffness of the tube causes the pressure wave to travel faster through the system. The system natural frequency also increases when the tube wall is stiffened.


2021 ◽  
Author(s):  
Hui-li Xu ◽  
Marilena Greco ◽  
Claudio Lugni

Abstract Fishes are talented swimmers. Depending on the propulsion mechanisms many fishes can use flapping tails and/or fins to generate thrust, which seems to be connected to the formation of a reverse von Kármán wake. In the present work, the flow past a 2D flapping foil is simulated by solving the incompressible Navier-Stokes equations in the open-source OpenFOAM platform. A systematic study by varying the oscillating frequency, peak-to-peak amplitude and Reynolds number has been performed to analyze the transition of vorticity types in the wake as well as drag-thrust transition. The overset grid method is used herein to allow the pitching foil to move without restrictions. Spatial convergence tests have been carried out with respect to grid resolution and the size of overset mesh domain. Numerical results are compared with available experimental data and discussed. The results show that the adopted methodology can be well applied to simulate large amplitude motions of the flapping foil. The transitions in the types of wake are consistent with the benchmark experimental data, and the drag-thrust transition of the pitching foil does not coincide with von Kármán (vK)-reverse von Kármán (reverse-vK) wake transition and it is highly dependent on the Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document