Numerical Investigation on Lock-In Condition and Convective Heat Transfer From an Elastically Supported Cylinder in a Cross Flow

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
F. Baratchi ◽  
M. Saghafian ◽  
B. Baratchi

In this numerical study, flow-induced vibrations of a heated elastically supported cylinder in a laminar flow with Re = 200 and Pr = 0.7 are simulated using the moving overset grids method. This work is carried out for a wide range of natural frequencies of the cylinder, while for all cases mass ratio and reduced damping coefficient, respectively, are set to 1 and 0.01. Here we study lock-in condition and its effects on force coefficients, the amplitude of oscillations, vortex shedding pattern, and Nusselt number and simultaneously investigate the effect of in-line oscillations of the cylinder on these parameters. Results show that for this cylinder, soft lock-in occurs for a range of natural frequencies and parameters like Nusselt number, and the amplitude of oscillation reach their maximum values in this range. In addition, this study shows that in-line oscillations of the cylinder have an important effect on its dynamic and thermal behavior, and one-degree-of-freedom simulation, for an elastic cylinder, which can vibrate freely in a flow field, is only valid for cases far from soft lock-in range.

Author(s):  
Marie Pomarede ◽  
Elisabeth Longatte ◽  
Jean-Franc¸ois Sigrist

Numerical simulation of vortex-induced-vibrations (VIV) of an elastically supported rigid circular cylinder in a fluid cross-flow has been thoroughly studied over the past years, both from the experimental and numerical points of view, because of its theoretical and practical interest in the understanding of flow-induced vibrations problems. In this context, the present paper aims at exposing a numerical study based on a coupled fluid-structure simulation, compared with previously published studies [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the interface motion. Energy exchanges between both systems are ensured through convenient coupling schemes. The present study is devoted to a low Reynolds number configuration ( Re = 100). Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated with the intention to observe the “lock-in” phenomenon. These numerical simulations are proposed for code validation purposes prior to industrial applications to tube bundle configurations [4].


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Author(s):  
Haizhou Liu ◽  
Hao Gao

Abstract Vibration suppression of distributed parameter systems is of great interest and has a wide range of applications. The dynamic performance of a primary system can be improved by adding dynamic vibration absorbers (DVA). Although the relevant topics have been studied for decades, the trade-off between capability of suppressing multiple resonant peaks and complexity of absorbers has not been well addressed. In this paper, the vibration suppression problem of a uniform Euler-Bernoulli beam with closely spaced natural frequencies is investigated. To achieve desired vibration reduction, a two-DOF DVA is connected to the beam through a pair of a spring and a dashpot. By introducing a virtual ground spring, the parameters of the absorber are determined via extended fixed point theory. The proposed method only requires univariate optimization and is computationally efficient. Numerical examples conducted verify the viability of the proposed method and the effectiveness of a two-DOF DVA in suppressing double resonances.


Author(s):  
Kenneth Bhalla ◽  
Lixin Gong

The purpose of this paper is to present a method that has been developed to identify if vortex induced vibration (VIV) occurs in well jumper systems. Moreover, a method has been developed to determine when VIV mitigation measures such as strakes are required. The method involves determining the in-plane and out-of-plane natural frequencies and mode shapes. The natural frequencies are then used, in conjunction with the maximum bottom current expected at a given location to determine if suppression is required. The natural frequency of a jumper system is a function of many variables, e.g. span length, leg height, pipe diameter and thickness, buoyancy placement, buoyancy uplift, buoyancy OD, insulation thickness, and contents of the jumper. The suppression requirement is based upon calculating a lower bound lock-in current speed based upon an assumed velocity bandwidth centered about the lock-in current. The out-of-plane VIV cross-flow response is produced by a current in the plane of the jumper; whereas the in-plane VIV cross-flow response is produced by the out-of-plane current. Typically, the out-of-plane natural frequency is smaller than the in-plane natural frequency. Jumpers with small spans have higher natural frequencies; thus small span jumpers may require no suppression or suppression on the vertical legs. Whereas, larger span jumpers may require no suppression, suppression on the vertical legs or suppression on all the legs. The span of jumper systems (i.e. production, water injection, gas lift/injection ...) may vary in one given field; it has become apparent that not all jumper systems require suppression. This technique has allowed us to recognize when certain legs of a given jumper system may require suppression, thus leading to a jumper design whose safety is not compromised while in the production mode, as well as minimizing downtime and identifying potential savings from probable fatigue failures.


2005 ◽  
Author(s):  
Ahad Ramezanpour ◽  
Hassan Shirvani ◽  
Ramin Rahmani ◽  
Iraj Mirzaee

A numerical study has been conducted to investigate the three dimensional (3D) staggered tube bundle turbulent cross flow confined between two parallel flat plates using RNG k-ε model and standard wall function utilizing commercial code FLUENT. The maximum Reynolds numbers of 1000, 5000, and 50000 and the distance between plates of H = 3, 5, 10, 15, and 20 mm have been considered. The arrangement of the staggered tube bundle is fix with geometrical characteristics of Sn/D = 1.5 and Sp/D = 1.2 which has been found optimum in previous two-dimensional studies. The constant temperature of 360K on tubes, constant inlet flow and plates’ temperature of 300K have been set as the boundary conditions. The global Nusselt number, friction factor for the dissimilar Reynolds numbers, distance between plates, local Nusselt number and different angles on first and third tubes have been evaluated.


Author(s):  
N. Rahmati ◽  
Z. Mansoori ◽  
M. Saffar-Avval ◽  
G. Ahmadi

In the present paper, a numerical study has been conducted to investigate the heat transfer from a constant temperature cylinder covered with metal foam. The cylinder is placed horizontally and is subjected to a constant mean cross-flow in turbulent regime. The Reynolds Averaged Navier-Stokes (RANS) and Darcy-Brinkman-Forchheimer equations are combined and used for flow analysis. The energy equation used assumes local thermal equilibrium between fluid and solid phases in porous media. The k-ω SST turbulence model is used to evaluate the eddy viscosity that is implemented in the momentum and energy equations. The flow in the metal foam (porous media) is in laminar regime. Governing equations are solved using the finite volume SIMPLEC algorithm. The effect of thermophysical properties of metal foam such as porosity and permeability on the Nusselt number is investigated. The results showed that using a metal porous layer with low porosity and high Darcy number in high Reynolds number turbulent flows markedly increases heat transfer rates. The corresponding increase in the Nusselt number is as high as 10 times that of a bare tube without the metal foam.


Author(s):  
Didier Lucor

In this numerical study, we build response surfaces of two degree-of-freedom vortex-induced vibrations (VIV) of flexibly mounted cylinders for a wide range of transverse and in-line natural frequencies. We consider both the structure and the flow to be two-dimensional and the structure has a low mass damping. The emphasis is put on the representation of the hydrodynamic loads acting on the cylinder in response to the change in the natural frequencies of the structure. The system is sampled for a wide range of natural frequencies within the synchronization region, totaling 149 two-dimensional flow-structure simulations. The parametric range of the in-line frequency is chosen to be larger than the one of the transverse frequency in order to favor multi-modal responses. No preferred frequencies are emphasized within the intervals of study. The fully spectral numerical approach relies on a stochastic collocation method coupled to a spectral element-based deterministic solver.


2013 ◽  
Vol 717 ◽  
pp. 361-375 ◽  
Author(s):  
Rémi Bourguet ◽  
George Em Karniadakis ◽  
Michael S. Triantafyllou

AbstractA slender flexible body immersed in sheared cross-flow may exhibit vortex-induced vibrations (VIVs) involving a wide range of excited frequencies and structural wavenumbers. The mechanisms of broadband VIVs of a cylindrical tensioned beam of length-to-diameter aspect ratio 200 placed in shear flow, with an exponentially varying profile along the span, are investigated by means of direct numerical simulation. The Reynolds number is equal to 330 based on the maximum velocity, for comparison with previous work on narrowband vibrations in linear shear flow. The flow is found to excite the structure at a number of different locations under a condition of wake–body synchronization, or lock-in. Broadband responses are associated with a distributed occurrence of the lock-in condition along the span, as opposed to the localized lock-in regions limited to the high inflow velocity zone, reported for narrowband vibrations in sheared current. Despite the instantaneously multi-frequency nature of broadband responses, the lock-in phenomenon remains a locally mono-frequency event, since the vortex formation is generally synchronized with a single vibration frequency at a given location. The spanwise distribution of the excitation zones induces travelling structural waves moving in both directions; this contrasts with the narrowband case where the direction of propagation toward decreasing inflow velocity is preferred. A generalization of the mechanism of phase-locking between the in-line and cross-flow responses is proposed for broadband VIVs under the lock-in condition. A spanwise drift of the in-line/cross-flow phase difference is identified for the high-wavenumber vibration components; this drift is related to the strong travelling wave character of the corresponding structural waves.


2019 ◽  
Vol 88 (1) ◽  
pp. 11101 ◽  
Author(s):  
Mahdi Benzema ◽  
Youb Khaled Benkahla ◽  
Ahlem Boudiaf ◽  
Sief-Eddine Ouyahia ◽  
Mohammed El Ganaoui

Numerical study for the effect of an external magnetic field on the mixed convection of Al2O3–water Newtonian nanofluid in a right-angle vented trapezoidal cavity was performed using the finite volume method. The non-homogeneous Buongiorno model is applied for numerical description of the dynamic phenomena inside the cavity. The nanofluid, with low temperature and high concentration, enters the cavity through the upper open border, and is evacuated through opening placed at the right end of the bottom wall. The cavity is heated from the inclined wall, while the remainder walls are adiabatic and impermeable to both the base fluid and nanoparticles. After validation of the model, the analysis was carried out for a wide range of Hartmann number (0 ≼ Ha ≼ 100) and nanoparticles volume fraction (0 ≼ ϕ0 ≼ 0.06). The flow behavior as well as the temperature and nanoparticles distribution shows a particular sensitivity to the variations of both the Hartmann number and the nanofluid concentration. The domination of conduction mechanism at high Hartmann numbers reflects the significant effect of Brownian diffusion which tends to uniform the distribution of nanoparticles in the domain. The average Nusselt number which increases with the nanoparticles addition, depends strongly on the Hartmann number. Finally, a correlation predicting the average Nusselt number within such geometry as a function of the considered parameters is proposed.


2016 ◽  
Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu

This paper presents a numerical study of flow around an elastically mounted circular cylinder in close proximity to a plane boundary vibrating in the transverse and inline directions in an oscillatory flow. The Reynolds-Averaged Navier-Stokes (RANS) equations and the SST k-ω turbulent equations are solved using the Arbitrary Langrangian-Eulerian (ALE) scheme and Petrov-Galerkin Finite Element Method for simulating the flow. The equation of motion is solved using the fourth-order Runge-Kutta method to find the displacements of the cylinder in the transverse and inline directions. The numerical model is validated against the previous results of vortex-induced vibration of an isolated circular cylinder in both cross-flow and inline directions. The flow model is further extended to study the vortex-induced vibration of a cylinder near a plane boundary with a very small gap ratio (e/D) of 0.01, with D and e being the diameter and the gap between the cylinder and the plane boundary, respectively. Simulations are carried out for two Keulegan-Carpenter (KC) numbers of 5 and 10 and a wide range of reduced velocities. It is observed that both the KC number and the reduced velocity affect the vibration of the cylinder significantly.


Sign in / Sign up

Export Citation Format

Share Document