Combined Microstructure and Heat Conduction Modeling of Heterogeneous Interfaces and Materials

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Ishan Srivastava ◽  
Sridhar Sadasivam ◽  
Kyle C. Smith ◽  
Timothy S. Fisher

Heterogeneous materials are becoming more common in a wide range of functional devices, particularly those involving energy transport, conversion, and storage. Often, heterogeneous materials are crucial to the performance and economic scalability of such devices. Heterogeneous materials with inherently random structures exhibit a strong sensitivity of energy transport properties to processing and operating conditions. Therefore, improved predictive modeling capabilities are needed that quantify the detailed microstructure of such materials based on various manufacturing processes and correlate them with transport properties. In this work, we integrate high fidelity microstructural and transport models, which can aid in the development of high performance energy materials. Heterogeneous materials are generally comprised of nanometric or larger length scale domains of different materials or different phases of the same material. State-of-the-art structural optimization models demonstrate the predictability of the microstructure for heterogeneous materials manufactured via powder compaction of variously shaped and sized particles. The ability of existing diffusion models to incorporate the essential multiscale features in random microstructures is assessed. Lastly, a comprehensive approach is presented for the combined modeling of a high fidelity microstructure and heat transport therein. Exemplary results are given that reinforce the importance of developing predictive models with rich stochastic output that connect microstructural information with physical transport properties.

Author(s):  
Andrea G. Sanvito ◽  
Giacomo Persico ◽  
M. Sergio Campobasso

Abstract This study provides a novel contribution toward the establishment of a new high-fidelity simulation-based design methodology for stall-regulated horizontal axis wind turbines. The aerodynamic design of these machines is complex, due to the difficulty of reliably predicting stall onset and poststall characteristics. Low-fidelity design methods, widely used in industry, are computationally efficient, but are often affected by significant uncertainty. Conversely, Navier–Stokes computational fluid dynamics (CFD) can reduce such uncertainty, resulting in lower development costs by reducing the need of field testing of designs not fit for purpose. Here, the compressible CFD research code COSA is used to assess the performance of two alternative designs of a 13-m stall-regulated rotor over a wide range of operating conditions. Validation of the numerical methodology is based on thorough comparisons of novel simulations and measured data of the National Renewable Energy Laboratory (NREL) phase VI turbine rotor, and one of the two industrial rotor designs. An excellent agreement is found in all cases. All simulations of the two industrial rotors are time-dependent, to capture the unsteadiness associated with stall which occurs at most wind speeds. The two designs are cross-compared, with emphasis on the different stall patterns resulting from particular design choices. The key novelty of this work is the CFD-based assessment of the correlation among turbine power, blade aerodynamics, and blade design variables (airfoil geometry, blade planform, and twist) over most operational wind speeds.


2013 ◽  
Vol 3 (2) ◽  
pp. 20120087 ◽  
Author(s):  
D. Groen ◽  
J. Borgdorff ◽  
C. Bona-Casas ◽  
J. Hetherington ◽  
R. W. Nash ◽  
...  

Multiscale simulations are essential in the biomedical domain to accurately model human physiology. We present a modular approach for designing, constructing and executing multiscale simulations on a wide range of resources, from laptops to petascale supercomputers, including combinations of these. Our work features two multiscale applications, in-stent restenosis and cerebrovascular bloodflow, which combine multiple existing single-scale applications to create a multiscale simulation. These applications can be efficiently coupled, deployed and executed on computers up to the largest (peta) scale, incurring a coupling overhead of 1–10% of the total execution time.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5820
Author(s):  
Zhenzhou Deng ◽  
Yushan Deng ◽  
Guandong Chen

Positron emission tomography (PET) has a wide range of applications in the treatment and prevention of major diseases owing to its high sensitivity and excellent resolution. However, there is still much room for optimization in the readout circuit and fast pulse sampling to further improve the performance of the PET scanner. In this work, a LIGHTENING® PET detector using a 13 × 13 lutetium-yttrium oxyorthosilicate (LYSO) crystal array read out by a 6 × 6 silicon photomultiplier (SiPM) array was developed. A novel sampling method, referred to as the dual time interval (DTI) method, is therefore proposed to realize digital acquisition of fast scintillation pulse. A semi-cut light guide was designed, which greatly improves the resolution of the edge region of the crystal array. The obtained flood histogram shown that all the 13 × 13 crystal pixels can be clearly discriminated. The optimum operating conditions for the detector were obtained by comparing the flood histogram quality under different experimental conditions. An average energy resolution (FWHM) of 14.3% and coincidence timing resolution (FWHM) of 972 ps were measured. The experimental results demonstrated that the LIGHTENING® PET detector achieves extremely high resolution which is suitable for the development of a high performance time-of-flight PET scanner.


Author(s):  
Hiroki Yamashita ◽  
Guanchu Chen ◽  
Yeefeng Ruan ◽  
Paramsothy Jayakumar ◽  
Hiroyuki Sugiyama

A high-fidelity computational terrain dynamics model plays a crucial role in accurate vehicle mobility performance prediction under various maneuvering scenarios on deformable terrain. Although many computational models have been proposed using either finite element (FE) or discrete element (DE) approaches, phenomenological constitutive assumptions in FE soil models make the modeling of complex granular terrain behavior very difficult and DE soil models are computationally intensive, especially when considering a wide range of terrain. To address the limitations of existing deformable terrain models, this paper presents a hierarchical FE–DE multiscale tire–soil interaction simulation capability that can be integrated in the monolithic multibody dynamics solver for high-fidelity off-road mobility simulation using high-performance computing (HPC) techniques. It is demonstrated that computational cost is substantially lowered by the multiscale soil model as compared to the corresponding pure DE model while maintaining the solution accuracy. The multiscale tire–soil interaction model is validated against the soil bin mobility test data under various wheel load and tire inflation pressure conditions, thereby demonstrating the potential of the proposed method for resolving challenging vehicle-terrain interaction problems.


Author(s):  
Yun-Hsiang Sun ◽  
Tao Chen ◽  
Cyrus Shafai

This work proposes a simple but general experimental approach including the rig design and measurement procedure to carry out a wide range of experiments required for identifying parameters for LuGre dynamic friction model. The design choice is based on accuracy of the estimated friction and flexibility in terms of changing contact conditions. The experimental results allow a complete LuGre model, which facilitates, but not limited to, other advanced friction modeling and high performance controller design if needed. In addition, several well-known dynamic friction features (varying break-away force, friction lag and presliding) are successfully demonstrated by our rig, which indicates the adequacy of our approach for capturing highly sophisticated and dynamic friction behavior over a wide range of operating conditions. The proposed set-up and the produced experimental data are believed to greatly facilitate the development of advanced friction compensation and modeling in friction affected mechanisms.


2014 ◽  
Vol 496-500 ◽  
pp. 1825-1829 ◽  
Author(s):  
Ehsan Rohani ◽  
Jing Wei Xu ◽  
Gwan Choi ◽  
Mi Lu

Manufacturing and operation of wireless systems require a practical solution for achieving low-power and high-performance when using advance communication apparatus such as that using multiple-input and multiple-output (MIMO). Often algorithm solutions achieve very high performance but over only in a narrow range of operating parameters. This paper presents a hardware design of MIMO detection that allows real-time switching between various algorithms and detection effort to achieve high performance over the wide-range of signal to noise ratio (SNR) found in realistic operating conditions. We illustrate a design with over 80% reduction in detection power that satisfies the required quality of service (QoS) in SNRs (Eb/No) as low as 8.7 dB.


2021 ◽  
Vol 895 (1) ◽  
pp. 012002
Author(s):  
V S Alekseev ◽  
R S Seryi

Abstract Currently sluice washing devices are the most common in alluvial gold mining. Their use provides a sufficiently high performance, relatively low power consumption, and acceptable recovery of valuable components. The theoretical provisions of traditional hydraulics make it possible to determine all the main parameters of the movement of particles of rocks and gold in the pulp, however, in real operating conditions of the sluice box, their actual values will differ greatly from the calculated ones, especially if there are solid fractions in the pulp with a particle size of more than 20 mm. This is explained by significant fluctuations in the values of the surface, average and bottom velocities of the two-phase flow, vertical pulsation velocity in conditions of constrained movement of the different fractional composition of rocks. The article presents the results of experimental studies to identify the dependence of the distance traveled by an individual gold particle and host rocks in a two-phase flow through a sluice, the bottom of which is lined with trapping coatings, on the design and technological parameters of the flushing device. The mathematical model for determining this distance formed the basis of the Gold Enriching program. The program allows, in a wide range of initial data, to determine the zones of concentration of gold of a certain size at the sluice boxes.


Author(s):  
Carlo Cravero ◽  
Davide De Domenico ◽  
Andrea Ottonello

Abstract Frequently in turbocharging radial turbine studies, some assumptions have to be done in order to make 1D matching calculations as easy as possible and to develop simulation approaches that can be useful for different purposes, like axial thrust prediction. One of these assumptions concerns the degree of reaction, which is often considered constant and equal to the value 0.5. In standard radial turbines design the velocity triangles are set by the target to keep a mean degree of reaction of 50%, in order to obtain low rotor losses and to minimize the exit swirl to get lower losses in the exhaust diffuser. From the experience gained on radial turbines operating in a wide range of conditions, it is evident that: the degree of reaction presents large variations along a given isospeed (especially at low rotational speed) and the mean value is far from 0.5 (particularly true in high performance applications). In the present work a method for the representation of the degree of reaction for radial turbine is suggested. The approach has been developed onto a twin scroll radial turbine for turbocharging, considering a large dataset of operating conditions (at both equal and partial admission). The discussion and the method suggested are based on a rich database from experimental data and numerical simulations developed by the authors on the 3D configuration of the turbines under investigation.


1991 ◽  
Vol 19 (2) ◽  
pp. 79-99 ◽  
Author(s):  
D. G. Young

Abstract Material property data used in finite element and other models for tire applications have often been obtained under static or low strain rate conditions at room temperature. In the latter case Williams-Landel-Ferry (WLF) shifts are assumed in order to relate the data to strain rates and temperatures typical of actual tire operation. However, such shifts may not always be appropriate for the highly loaded, diverse elastomer blends used in tires today unless one wishes to go to the trouble of generating the WLF constant for each compound. Data are presented to show that one can directly and easily obtain high quality stress or strain energy density results over wide ranges of strain rates, strain levels, and temperature using techniques developed for fatigue characterization. Thus, material properties can be obtained as a by-product of fatigue testing with little added work, or they can be obtained straightforwardly and quickly if fatigue testing is not required. These data are generated in a dynamic, pulsed loading mode which is especially relevant for those modeling applications which deal with the rolling tire. Results from a high performance tire tread, a sidewall, and an innerliner are presented to illustrate the wide range of compounds that can be accommodated. The primary mode of deformation employed is pure shear. Also, limited data from static simple extension and pulsed simple extension tests are shown for comparison. The pulsed pure shear and simple extension data, obtained over a wide strain range, are an excellent source of basic information on a given compound to fit empirical models, generate Mooney-Rivlin constant, or define material constants for more generalized nonlinear models such as Ogden, Peng, or Peng-Landel. The latter material models are now becoming available in commercial finite element codes to allow studies of tire deformations, rolling resistance, and failure properties under realistic operating conditions.


1977 ◽  
Vol 99 (1) ◽  
pp. 4-11 ◽  
Author(s):  
E. M. Sparrow ◽  
B. R. Baliga ◽  
S. V. Patankar

An analysis has been made of laminar flow and heat transfer in channels whose walls are interrupted periodically along the streamwise direction. Such channels are frequently employed in high-performance compact heat exchangers. Numerical solutions of the mass, momentum, and energy conservation equations yielded local heat transfer and pressure drop results. These results were obtained for a range of Reynolds numbers and for several values of a dimensionless geometrical parameter characterizing the streamwise length L of the individual plate segments which make up the interrupted walls. The Prandtl number was fixed at 0.7 for all the calculations. The basic heat transfer and pressure drop results were employed to investigate whether an interrupted-wall channel experiences an augmented heat transfer rate compared with that for a parallel plate channel. For conditions of equal heat transfer surface area and equal pumping power, appreciably higher heat transfer rates prevailed in the interrupted-wall channel for a wide range of operating conditions. The augmentation was especially marked for relatively short channels and high Reynolds numbers. The results also demonstrated the existence of a new type of fully developed regime, one that is periodic. At sufficiently large downstream distances, the velocity and temperature profiles repeat their values at successive axial stations separated by a distance 2L and, in addition, the average heat transfer coefficient for a plate segment takes on a constant value.


Sign in / Sign up

Export Citation Format

Share Document