Modeling Viscous Oil Cavitating Flow in a Centrifugal Pump

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Wen-Guang Li

Properly modeling cavitating flow in a centrifugal pump is a very important issue for prediction of cavitation performance in pump hydraulic design optimization and application. As a first trial, the issue is explored by using computational fluid dynamics (CFD) method plus the full cavitation model herein. To secure a smoothed head-net positive suction head available (NPSHa) curve, several critical techniques are adopted. The cavitation model is validated against the experimental data in literature. The predicted net positive suction head required (NPSHr) correction factor for viscosity oils is compared with the existing measured data and empirical correlation curve, and the factor is correlated to impeller Reynolds number quantitatively. A useful relation between the pump head coefficient and vapor plus noncondensable gas-to-liquid volume ratio in the impeller is obtained. Vapor and noncondensable gas concentration profiles are illustrated in the impeller, and a “pseudocavitation” effect is confirmed as NPSHa is reduced. The effects of exit blade angle on NPSHr are presented, and the contributions of liquid viscosity and noncondensable gas concentration to the increase of NPSHr at a higher viscosity are identified.

Author(s):  
Moritz Frobenius ◽  
Rudolf Schilling ◽  
Jens Friedrichs ◽  
Gu¨nter Kosyna

This paper presents numerical simulations and experimental investigations of the cavitating flow through a centrifugal pump impeller of low specific speed. The experimental research was carried out at the Pfleiderer-Institute of the Technical University of Braunschweig, while the numerical simulations were performed at the Institute for Hydraulic Machinery and Plants at the Technical University of Munich (LHM). The cavitation model used is based on bubble dynamics and is able to describe the complicated and transient growth and collapse of the cavitation bubbles. The model has been implemented in the 3D CFD-code CNS3D developed at the LHM. The CNS3D-code has been applied to simulate the cavitating flow through a centrifugal pump impeller. The computed pump head, incipient NPSH and three-percent head drop are compared to the experimental data. Also the pressure distributions measured on the blades are compared with the computed ones. Finally, the numerically investigated void fraction distributions are shown in comparison with pictures of the cavitation zones on the blade.


Author(s):  
Enver Karakas ◽  
Nehir Tokgoz ◽  
Hiroyoshi Watanabe ◽  
Matteo Aureli ◽  
Cahit Evrensel

Abstract This paper investigates and compares four commonly used flow transport equation-based cavitation models and their applicability to predict the cavitation performance and bubble dynamics of an industrial centrifugal pump with a helical inducer. The main purpose of this study is to identify the most appropriate cavitation model and the associated empirical constants for calculating the cavitation performance of centrifugal pumps with inducers. Each cavitation model is reviewed in detail and the uniqueness of each model is outlined. These cavitation models are incorporated in a computational fluid dynamics code to study the vaporization and condensation transport rate of the fluid. Experimental tests are conducted on the pump to determine the true cavitation performance in terms of Net Positive Suction Head (NPSH). Experimental results are compared to simulation results for different cavitation models to validate accuracy and assumptions of each model, along with the empirical constants. Lastly, bubble formation, cavitation inception, and bubble growth predicted by each cavitation model are compared with the experimental results. A sensitivity analysis is conducted in order to determine the impact of each set of empirical constants to the condensation and the vaporization rate in the centrifugal pump. Results show that two of the cavitation models exhibit high dependency on the empirical constants in terms of change in vaporization rate. Modifications to empirical constants for two of the four cavitation models are suggested to obtain agreement with the experimentally observed cavitation behavior and better predict NPSH performance for the industrial pump studied.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4264
Author(s):  
Daqing Zhou ◽  
Huixiang Chen ◽  
Yuan Zheng ◽  
Kan Kan ◽  
An Yu ◽  
...  

Marine and hydrokinetics (MHK) represent an emerging industry with hundreds of potentially viable technologies, such as potential extractable energy from plain area rivers where the water level differences are very small and the traditional water turbine pump (WTP) cannot be used. A suitable WTP, composed of a tubular turbine directly driving a centrifugal pump, was designed and developed based on computational fluid dynamics (CFD) and model tests. Two general design schemes of such river-current (RC)-driven WTP are presented here, obtaining the desired operating parameters of discharge and pump head. A CFD analysis of Scheme B, which employs a radial outlet, allowing additional degrees of freedom for the dimensions of the centrifugal pump, was carried out and verified experimentally by model tests. The minimum deviation of pump head is within ±5%, and the trend of other working conditions is consistent, so the results of the numerical simulation and model tests show good agreement, demonstrating the feasibility of the CFD method for practical applications. Then, using the CFD method, the optimum rotational speed for the turbine was determined, and the turbine draft tube was improved further. With a turbine runner diameter of 0.5 m, the results show best performance at n = 350 r/min. The straight conical draft tube was changed to an elbow draft tube with multiple exits. Additionally, four different cross-sectional shapes were designed for the pump volute, and their effects on the performance of the WTP were analyzed. Finally, the round shape was selected, because of its best performance. The turbine unit has the highest efficiency of 81.2%, at an inlet velocity v = 2.4 m/s, while the pump exhibits the best efficiency of 90.2% at the design discharge and head of 30 l/s and 4.45 m respectively. Overall, the RC-driven WTP makes good use of the kinetic energy of the river current as a power source, solving the inapplicability of traditional WTP in plain areas.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 689
Author(s):  
Yuan ◽  
Yuan ◽  
Tang

Double-volute is an effective technique to reduce radial hydraulic force on the centrifugal pump and thereby mitigate the pump-casing vibration induced by unsteady flow characteristics. The mechanism of the double-volute structure balancing radial force on the impeller and volute was investigated on the basis of volute cross-sections by using Computational Fluid Dynamics (CFD) method. The tested performances and simulated inner-flow characteristics of two pumps with single-volute and double-volute were compared in this paper. The performance-test results verify the veracity of CFD method and illustrate that double-volute pump has some losses in terms of pump head and operation efficiency. The numerical simulations reveal that double-volute pump has smaller radial-force magnitude than single-volute pump on the abnormal conditions. Steady pressure field and transient pressure variations of pumps were explored to account for radial-force characteristics of double-volute pump. Compared with the single-volute structure, obvious pressure increases were found in the upper chamber (single part) of the double-volute, while the static pressure decreased in the lower chamber (double chambers). This situation reduces the pressure difference between two volute cross-sections in the collinear radial direction, resulting in smaller radial hydraulic force. Moreover, the transient simulations present the same phenomenon. The radial-forces distribute more uniformly in the double-volute pump, which can alleviate some vibrations.


Author(s):  
Wenguang Li ◽  
Yuliang Zhang

In this study, the cavitating flow and cavitation performance are studied by employing the computational fluid dynamics method in the turbine mode of a centrifugal pump at part-load, best efficiency, and over-load points. The flow models are validated in the pump mode under noncavitation condition. The relationships between the performance variables and net positive suction head available are obtained, and the corresponding net positive suction heads required are extracted. The flow patterns, location, and shape of the cavity are illustrated; the pressure coefficient profiles on the blade surfaces are clarified and compared with those in the pump mode under both noncavitation and critical cavitation conditions. The cavitation performance and flow pattern as well as cavity shape in the turbine mode are distinguishably different from the pump mode. It is found out that the cavitation behavior in the turbine mode exhibits three notable features: a lower and less flow rate-dependent net positive suction head required, a flow rate-dependent suppressed rotational flow in the draft tube, as well as a rotational and extendable cavitating rope originated from the impeller cone. The results and methods can be important and useful for the design and selection of a centrifugal pump as turbine.


2021 ◽  
pp. 2150327
Author(s):  
Weiguo Zhao ◽  
Bao Guo

This paper proposes a new method that obstacles are attached to both the suction and pressure surfaces of the blades to suppress cavitation development. A centrifugal pump with a specific speed of 32 is selected as the physical model to perform the external characteristic and cavitation performance experiments. SST [Formula: see text] turbulence model and Zwart cavitation model were employed to simulate the unsteady cavitation flow in the pump. The results indicate that the numerical simulation results are in good agreement with the experimental counterparts. After the obstacles are arranged, the maximum head decrease is only 1.37%, and the relative maximum drop of efficiency is 1.12%. Obstacles have minimal impacts on the variations of head and efficiency under all flow rate conditions. The distribution of vapor volume in the centrifugal pump is significantly reduced after obstacles are arranged and the maximum fraction reduction is 53.6%. The amplitude of blade passing frequency decreases significantly. While obstacles decrease the intensity of turbulent kinetic energy near the wall in the impeller passages to effectively reduce the distribution of cavitation bubbles, and control the development of cavitation. After the obstacles are set, the strength of the vortex in the impeller passages is weakened significantly, the shedding of the vortex is suppressed, flow in the impeller becomes more stable.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Wang Jian ◽  
Wang Yong ◽  
Liu Houlin ◽  
Si Qiaorui ◽  
Matevž Dular

Cavitation has bothered the hydraulic machinery for centuries, especially in pumps. It is essential to establish a solid way to predict the unsteady cavitation evolution with considerable accuracy. A novel cavitation model was proposed, considering the rotating motion characteristic of centrifugal pump. Comparisons were made with three other cavitation models and validated by experiments. Considerable agreements can be noticed between simulations and tests. All cavitation models employed have similar performance on predicting the pump head drop curve with proper empirical coefficients, and also the unsteady cavitation evolution was well solved. The proposed rotating corrected-based cavitation model (rotating based Zwart-Gerber-Belamri (RZGB)) obtained identical triangle cavity structure with the experiment visualizations, while the others also got triangle structure but with opposite direction. The maximum flow velocity in the impeller passage appears near the shroud, contributing to the typical triangle cavity structure. A preprocessed method for instant rotating images was carried out for evaluating the erosion risk area in centrifugal pump, based on the standard deviation of gray level. The results imply that the unsteady rear part of the attached cavity is vulnerable to be damaged, where the re-entrant flow was noticed. This work presented a suitable cavitation model and reliable numerical simulation approach for predicting cavitating flows in centrifugal pump.


2018 ◽  
Vol 1 (2) ◽  
pp. 24-39
Author(s):  
A. Farid ◽  
A. Abou El-Azm Aly ◽  
H. Abdallah

Cavitation in pumps is the most severe condition that centrifugal pumps can work in and is leading to a loss in their performance.  Herein, the effect of semi-open centrifugal pump side clearance on the inception of pump cavitation has been investigated.  The input pump pressure has been changed from 80 to 16 kPa and the pump side clearance has been changed from 1 mm to 3 mm at a rotation speed of 1500 rpm. It has been shown that as the total input pressure decreased; the static pressure inside the impeller is reduced while the total pressure in streamwise direction has been reduced, also the pump head is constant with the reduction of the total input pressure until the cavitation is reached. Head is reduced due to cavitation inception; the head is reduced in the case of a closed impeller with a percent of 1.5% while it is reduced with a percent of 0.5% for pump side clearance of 1mm, both are at a pressure of 20 kPa.   Results also showed that the cavitation inception in the pump had been affected and delayed with the increase of the pump side clearance; the cavitation has been noticed to occur at approximate pressures of 20 kPa for side clearance of 1mm, 18 kPa for side clearances of 2mm and 16 kPa for 3mm.


Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Hucan Hou ◽  
Zhiyi Yuan

Low efficiency and bad cavitation performance restrict the development of the ultra-low specific-speed centrifugal pump (ULSSCP). In this research, combined turbulent boundary layer theory with two-dimension design and two-dimension viscous hydraulic design method has been proposed to redesign a ULSSCP. Through the solution of the displacement thickness in the boundary layer, a less curved blade profile with a larger outlet angle was obtained. Then the hydraulic and cavitation performance of the reference pump and the designed pump were numerically studied. The comparison of performance of the reference pump calculated by the numerical and experimental results revealed a better agreement. Research shows that the average hydraulic efficiency and head of the designed pump improve by 2.9% and 3.3%, respectively. Besides, the designed pump has a better cavitation performance. Finally, through the internal flow analysis with entropy production diagnostic model, a 24.8% drop in head loss occurred in the designed pump.


Sign in / Sign up

Export Citation Format

Share Document