Experimental Studies on Foil Bearing With a Sliding Coating Made of Synthetic Material

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Grzegorz Zywica ◽  
Pawel Baginski ◽  
Slawomir Banaszek

The paper discusses the research on foil bearings with antifriction coating manufactured from synthetic materials. The tests were carried out on a special test stand of our own construction, designed with the use of numerical analysis. In the course of the experimental studies, the test stand was set up in two configurations: with one or two foil bearings. The measurements were done, which focused on temperature distributions with the aid of thermocouples and thermovision camera. The measurements were being performed under varying conditions of bearing operation. The conducted experiments permitted to verify the durability, thermal characteristics, and dynamic performance of foil bearings in different configurations. An original method to measure temperature of a top foil has been worked out.

Author(s):  
Hao Li ◽  
Haipeng Geng ◽  
Lei Qi ◽  
Lu Gan

Foil thrust bearings have attracted considerable attention in small-sized turbo machines with its excellent stability, high compliance, temperature durability. Geometric structure play an important role on the performance of foil thrust bearings. However, the current research on the structure mainly focuses on the underlying foil type, such as bump foil, protuberant bump. In fact, the foil profile, especially in the convergent region has significant influence. In this paper, foil thrust bearings were classified into convex, slope and concave types according to the profile curvature. A numerical model of six pads foil thrust bearing was established by combining the shell model and Reynolds equation. The static and dynamic performance of thrust bearings with different curvature was calculated. The results showed that the convex convergent possessed higher capacity and was not sensitive to displacement disturbance. A stiffness testing system for thrust foil bearing was set up, and the results verified that the foil with convex wedge had higher stiffness. The experiment also indicated that all the thrust foil bearings had typical damping hysteresis. The axial force of a 10 kW on-board compressor was calculated. Based on the conclusion of this paper, the design scheme of curvature value β = 0.6 and gas thickness h2=15 µm was given in consideration of bearing capacity and machining robustness.


Tribology ◽  
2006 ◽  
Author(s):  
Daejong Kim ◽  
Soonkuk Park

Foil bearings are widely used for oil-free microturbomachinery. One of the critical technical issues related to reliability of the foil bearings is a coating wear on the top foil and rotor during start/stops. Especially for heavily loaded foil bearings, large start torque requires a large drive motor. Bearing cooling is also mandatory for certain applications because the foil bearings can generate significant amount of heat depending on operating conditions. Usually axial flow is used through the space between the top foil and bearing sleeve. In this paper, a hybrid air foil bearing with external pressurization is introduced. A flexible steel tube is attached to the backside of the top foil with orifice holes, and externally pressurized air is directly supplied to the bearing clearance to lift off the rotor before rotor spins. The hybrid operation eliminates the coating wear during start/stop cycles, reduces drag torque during starts, and eliminates axial flow cooling. The hybrid foil gas bearing was constructed using a multiple compression springs to demonstrate a feasibility of the concept. A simple analytical model to calculate top foil deflection under hydrostatic pressurization has been developed. Predictions via orbit simulations indicate the hybrid air foil bearings can have much higher critical speed and onset speed of instability than hydrodynamic counter part. Measured load capacity was slightly higher than hydrodynamic bearing even under smaller amount of air flow. In addition, the hybrid operation was very effective for bearing cooling even if the cooling flow rate was lower than hydrodynamic counterpart. The measured very small drag torque during the start/stop demonstrates the hybrid foil bearing can have near-infinite life time without wear of the bearing and rotor surface. The experimental studies show high potential of the hybrid air foil bearings for various oil-free turbomachinery, especially for heavily loaded high temperature applications.


Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Crystal A. Heshmat

The expanded application of high-speed rotor systems operating on compliant foil bearings will be greatly enhanced with the ability to adequately couple multiple shaft systems with differing bearing systems and dynamic performance. In this paper the results of an analytical tradeoff study assessing coupling dynamic characteristics and their impact on coupled rotor-bearing system dynamics are presented. This analysis effort was completed in an effort to establish the form of characteristics needed to couple foil bearing supported rotors to ball bearing supported rotors, other foil bearing supported rotors as well as coupling rigid and flexible rotors both supported on foil bearings. The conclusions from this study indicate that with appropriate coupling design, a wide array of foil bearing supported rotor systems may be successfully coupled.


Author(s):  
M. J. Conlon ◽  
A. Dadouche ◽  
W. M. Dmochowski ◽  
R. Payette ◽  
J.-P. Be´dard

Oil-free foil bearing technology has advanced intermittently over the years, driven by research efforts to improve both steady-state and dynamic performance characteristics, namely: load capacity, stiffness, and damping. Bearing designs are thus classified according to “generation”, with first-generation bearings being the most primitive. This paper presents an experimental evaluation of a first- and a second-generation foil bearing, and aims to provide the high-fidelity data necessary for proper validation of theoretical predictive models of foil bearing performance. The aforementioned test bearings were fabricated in-house, and are both 70mm in diameter with an aspect ratio of 1; bearing manufacturing details are provided. The work makes use of a facility dedicated to measuring both the steady-state and dynamic properties of foil bearings under a variety of controlled operating conditions. The bearing under test is placed at the midspan of a horizontal, simply-supported, stepped shaft which rotates at up to 60krpm. Static and dynamic loads of up to 3500N and 450N (respectively) can be applied by means of a pneumatic cylinder and two electrodynamic shakers. The bearings’ structural (static) stiffnesses are highly nonlinear, and this affects the accuracy of the dynamic coefficient determination. Both dynamic stiffness and damping are found to vary nonlinearly with excitation frequency, and are over-predicted by a structural experimental evaluation — the film plays an important role in bearing dynamics. The second-generation bearing is found to have a higher load capacity, dynamic stiffness, and damping than the first-generation bearing.


Author(s):  
Y M Jen ◽  
C B Lee

In a secondary control unit system, an accumulator changes the relationship of the pumps and motor from flow coupling to pressure coupling. This change creates several benefits, including energy conservation, increased stability and the ability to change the rotational direction of the hydraulic motor. The accumulator therefore plays an important role because it dominates the overall performance of the secondary control unit system. This paper studies the influence of accumulator volume and precharge gas pressure on the performance of a hydrostatic transmission system in a secondary unit control system. A small test rig of the secondary unit system was set up and a series of experimental studies were run. A mathematical model was derived for simulation purposes. The results reveal that making the volume of the accumulator and the precharge gas pressure as high as possible under permitted circumstances can decrease the fluctuation of working pressure, improve the dynamic performance of speed control and increase the recovery of energy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hao Li ◽  
Haipeng Geng ◽  
Hao Lin

Purpose The misalignment is generally inevitable in the process of machining and assembly of rotor systems with gas foil bearings, but the exploration on this phenomenon is relatively less. Therefore, the purpose of this paper is to carry out the thermo-elastohydrodynamic analysis of the foil bearing with misalignment, especially the inhomogeneous foil bearing. Design/methodology/approach The rotor is allowed to misalign in two non-rotating directions. Then the static and dynamic performance of the inhomogeneous foil bearing is studied. The thermal-elastohydrodynamic analysis is realized by combining the Reynolds equation, foil deformation equation and energy equation. The small perturbation method is used to calculate the dynamic coefficients, then the critical whirl ratio is obtained. Findings The gas pressure, film thickness and temperature distribution distort when the misalignment appears. The rotor misalignment can improve the loading capacity but rise the gas temperature at the same time. Furthermore, the rotor misalignment can affect the critical whirl ratio which demonstrates that it is necessary to analyze the misalignment before the rotordynamic design. Originality/value The value of this paper is the exploration of the thermo-elastohydrodynamic performance of the inhomogeneous foil bearing with misalignment, the analysis procedure and the corresponding results are valuable for the design of turbo system with gas foil bearings.


Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Michael J. Tomaszewski

A test of the target drone main propulsion turbojet engine was recently conducted that demonstrated successful operation of a turbojet engine with a compliant foil air bearing. For this effort, the hot section rolling element bearing and the entire existing lubrication system was replaced with a compliant foil air bearing. This technology demonstration test showed the ability of the foil bearing to operate in the extremely challenging environment behind the turbine. Detailed engine integration studies, bearing component rig testing and hot engine simulator tests were completed prior to the successful engine test. The rig and simulator tests verified high temperature capabilities of the bearing and its surface coating, the bearing journal design, bearing dynamic performance, and rotor-bearing system dynamic stability, prior to engine integration and test. Based on these preliminary efforts, the engine and bearing were assembled and tests were conducted that included over 70 start stop cycles (including hot restarts), seven simulated mission cycles and more than 14 hours of run time. The foil bearing and engine operated flawlessly throughout the test. Vibrations were very low and all temperatures and pressures were as expected. A posttest tear down and hardware inspection revealed that the bearing, journal and all components remained in perfect condition. These data will be used to further the application of foil bearings to numerous other gas turbine engines for both military and commercial systems.


Author(s):  
Michael J. Tomaszewski ◽  
James F. Walton ◽  
Hooshang Heshmat

The expanded application of high-speed rotor systems operating on compliant foil bearings will be greatly enhanced with the ability to adequately couple multiple shaft systems with differing bearing systems and dynamic performance. In this paper the results of a successful experimental program are presented. Test results are presented for three different foil bearing coupled rotor systems. First, a coupled 32 kW, 60,000 rpm induction motor drive supported on compliant foil bearings was coupled to an identical 32 kW 60,000 rpm generator rotor and operated to full speed. Next, a high-speed 30,000 rpm capable ball bearing mounted precision spindle was driven to full speed when coupled to a 32 kW foil bearing supported drive motor. Third, the 32 kW, 60,000 rpm foil bearing based motor drive was coupled to a foil bearing supported rotor having a bending critical speed at approximately 29,000 rpm. This combined system was operated successfully to 60,000 rpm. Results of this experimental test program confirm the rotor-bearing system dynamic analysis and demonstrate the feasibility of coupling foil bearing supported rotors to a wide array of other rotor-bearing systems.


2013 ◽  
Vol 7 (1) ◽  
pp. 58-62 ◽  
Author(s):  
Grzegorz Żywica

Abstract Foil bearings are a variety of slide bearings in which an additional set of foils is applied between journal and bush, in order to improve the selected static and dynamic properties. Engineers and researchers from all over the world investigate bearings of this type since many years - both from numerical as well as experimental point of view. Due to the complexity of construction, the reliable simulation models are all the time being searched for. This paper discusses the important stages of elaboration of the structural supporting layer numerical model of the foil bearing as well as results of verification tests. The main goal of the conducted study was assessment of reliability of the elaborated numerical model, in scope of dynamic properties. In the near future it will be used for elaboration of the numerical model of the entire foil bearing, which will take into account also phenomena in fluid-film layer. Those models will be used together to describe bearing system in operation.


Author(s):  
Jiale Tian ◽  
Baisong Yang ◽  
Sheng Feng ◽  
Lie Yu ◽  
Jian Zhou

In this study, an ultra-high-speed rotor–gas foil-bearing system is designed and applied to a permanent magnet synchronous motor. Gas foil journal bearings and gas foil thrust bearings are used to provide journal and axial support to the rotor, respectively. The bearings are analyzed theoretically considering the nonlinear deflection of the top foil, and the static and dynamic characteristics are obtained with which the rotor dynamic performances of the tested rotor are calculated using the finite element method. During the experiment, the permanent magnet synchronous motor can operate stably at 94,000 r/min, which demonstrates a great dynamic performance of the gas foil bearings and the stability that it provides to the entire system. The sub-synchronous vibration also occurs when the rotating speed reaches 60,000 r/min and as the speed keeps rising, the amplitude of such vibration increases, which will contribute to the destabilization of the rotor–gas foil-bearing system. Finally, the axial force of the rotor is calculated theoretically as well as measured directly by four micro force sensors mounted in the thrust end cover of the permanent magnet synchronous motor. The experimental results presented in this article are expected to provide a useful guide to the design and analysis of the rotor–gas foil-bearing system and high-speed permanent magnet synchronous motor.


Sign in / Sign up

Export Citation Format

Share Document