Spatial Probabilistic Modeling of Corrosion in Ship Structures

Author(s):  
Jesus Luque ◽  
Rainer Hamann ◽  
Daniel Straub

Corrosion in ship structures is influenced by a variety of factors that are varying in time and space. Existing corrosion models used in practice only partially address the spatial variability of the corrosion process. Typical estimations of corrosion model parameters are based on averaging measurements for one ship type over structural elements from different ships and operational conditions. Most models do not explicitly predict the variability and correlation of the corrosion process among multiple locations in the structure. This correlation is of relevance when determining the necessary inspection coverage, and it can influence the reliability of the ship structure. In this paper, we develop a probabilistic spatiotemporal corrosion model based on a hierarchical approach, which represents the spatial variability and correlation of the corrosion process. The model includes as hierarchical levels vessel–compartment–frame–structural element–plate element. At all levels, variables representing common influencing factors (e.g., coating life) are introduced. Moreover, at the lowest level, which is the one of the plate element, the corrosion process can be modeled as a spatial random field. For illustrative purposes, the model is trained through Bayesian analysis with measurement data from a group of tankers. In this application, the spatial dependence among corrosion processes in different parts of the ships is identified and quantified using the proposed hierarchical model. Finally, how this spatial dependence can be exploited when making inference on the future condition of the ships is demonstrated.

Author(s):  
Jesus Luque ◽  
Rainer Hamann ◽  
Daniel Straub

Corrosion in ship structures is influenced by a variety of factors that are varying in time and space. Existing corrosion models used in practice only partially address the spatial variability of the corrosion process. Typical estimations of corrosion parameters are based on averaging measurements over structural elements from different ships and operational conditions, without considering the variability among and within the elements. However, this variability is important when determining the necessary inspection coverage, and it may influence the reliability of the ship structure. We develop a probabilistic spatio-temporal corrosion model based on a hierarchical approach, which represents the spatial variability of the corrosion process. The model includes the hierarchical levels vessel – compartment – frame – structural element – plate element. At all levels, variables representing common influencing factors are introduced. Moreover, at the lowest level, which is the one of the plate element, the corrosion process is modeled as a spatial random field. For illustrative purposes, the model is trained through Bayesian analysis with measurement data from a group of tankers. In this application it is found that there is significant spatial dependence among corrosion processes in different parts of the ships, which the proposed hierarchical model can capture. Finally, it is demonstrated how this spatial dependence can be exploited when making inference on the future condition of the ships.


Revista CERES ◽  
2016 ◽  
Vol 63 (4) ◽  
pp. 477-485
Author(s):  
Michele Jorge da Silva ◽  
Antonio Policarpo Souza Carneiro ◽  
Andréia Luiza Gonzaga Feres ◽  
José Eustáquio Souza Carneiro ◽  
Nerilson Terra Santos ◽  
...  

ABSTRACT In field experiments, it is often assumed that errors are statistically independent, but not always this condition is met, compromising the results. An inappropriate choice of the analytical model can compromise the efficiency of breeding programs in preventing unpromising genotypes from being selected and maintained in the next selection cycles resulting in waste of time and resources. The objective of this study was to evaluate the spatial dependence of errors in experiments evaluating grain yield of bean progenies using analyses in lattice and randomized blocks. And also evaluate the efficiency of geostatistical models to describe the structure of spatial variability of errors. The data used in this study derived from experiments arranged in the lattice design and analyzed as lattice or as randomized blocks. The Durbin-Watson test was used to verify the existence of spatial autocorrelation. The theoretical semivariogram was fitted using geostatistical models (exponential, spherical and Gaussian) to describe the spatial variability of errors. The likelihood ratio test was applied to assess the significance of the geostatistical model parameters. Of the eight experiments evaluated, five had moderate spatial dependence for the randomized blocks analysis and one for both analyses, in lattice and randomized blocks. The area of the experiments was not a determinant factor of the spatial dependence. The spherical, exponential and Gaussian geostatistical models with nugget effect were suitable to represent the spatial structure in the randomized block analysis. The analysis in lattice was efficient to ensure the independence of errors.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1265 ◽  
Author(s):  
Johanna Geis-Schroer ◽  
Sebastian Hubschneider ◽  
Lukas Held ◽  
Frederik Gielnik ◽  
Michael Armbruster ◽  
...  

In this contribution, measurement data of phase, neutral, and ground currents from real low voltage (LV) feeders in Germany is presented and analyzed. The data obtained is used to review and evaluate common modeling approaches for LV systems. An alternative modeling approach for detailed cable and ground modeling, which allows for the consideration of typical German LV earthing conditions and asymmetrical cable design, is proposed. Further, analytical calculation methods for model parameters are described and compared to laboratory measurement results of real LV cables. The models are then evaluated in terms of parameter sensitivity and parameter relevance, focusing on the influence of conventionally performed simplifications, such as neglecting house junction cables, shunt admittances, or temperature dependencies. By comparing measurement data from a real LV feeder to simulation results, the proposed modeling approach is validated.


1999 ◽  
Vol 220 (1-2) ◽  
pp. 48-61 ◽  
Author(s):  
I. Chaubey ◽  
C.T. Haan ◽  
S. Grunwald ◽  
J.M. Salisbury

2016 ◽  
Vol 30 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Aura Pedrera-Parrilla ◽  
Eric C. Brevik ◽  
Juan V. Giráldez ◽  
Karl Vanderlinden

Abstract Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the ‘La Manga’ catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Gabriel Soropa ◽  
Olton M. Mbisva ◽  
Justice Nyamangara ◽  
Ermson Z. Nyakatawa ◽  
Newton Nyapwere ◽  
...  

AbstractA study was conducted to examine spatial variability of soil properties related to fertility in maize fields across varying soil types in ward 10 of Hurungwe district, Zimbabwe; a smallholder farming area with sub-humid conditions and high yield potential. Purposively collected and geo-referenced soil samples were analyzed for texture, pH, soil organic carbon (OC), mineral N, bicarbonate P, and exchangeable K. Linear mixed model was used to analyze spatial variation of the data. The model allowed prediction of soil properties at unsampled sites by the empirical best linear unbiased predictor (EBLUP). Evidence for spatial dependence in the random component of the model was evaluated by calculating Akaike’s information criterion. Soil pH ranged from 4.0 to 6.9 and showed a strong spatial trend increasing from north to south, strong evidence for a difference between the home and outfields with homefields significantly higher and between soil textural classes with the sand clay loam fraction generally higher. Soil OC ranged from 0.2 to 2.02% and showed no spatial trend, but there was strong evidence for a difference between home and outfields, with mean soil OC in homefields significantly larger, and between soil textural classes, with soil OC largest in the sandy clay loams. Both soil pH and OC showed evidence for spatial dependence in the random effect, providing a basis for spatial prediction by the EBLUP, which was presented as a map. There were significant spatial trends in mineral N, available P and exchangeable K, all increasing from north to south; significant differences between homefields and outfields (larger concentrations in homefields), and differences between the soil textural classes with larger concentrations in the sandy clay loams. However, there was no evidence for spatial dependence in the random component, so no attempt was made to map these variables. These results show how management (home fields vs outfields), basic soil properties (texture) and other factors emerging as spatial trends influence key soil properties that determine soil fertility in these conditions. This implies that the best management practices may vary spatially, and that site-specific management is a desirable goal in conditions such as those which apply in Ward 10 of Hurungwe district in Zimbabwe.


2021 ◽  
Vol 51 ◽  
Author(s):  
Diogo Neia Eberhardt ◽  
Robélio Leandro Marchão ◽  
Pedro Rodolfo Siqueira Vendrame ◽  
Marc Corbeels ◽  
Osvaldo Guedes Filho ◽  
...  

ABSTRACT Tropical Savannas cover an area of approximately 1.9 billion hectares around the word and are subject to regular fires every 1 to 4 years. This study aimed to evaluate the influence of burning windrow wood from Cerrado (Brazilian Savanna) deforestation on the spatial variability of soil chemical properties, in the field. The data were analysed by using geostatistical methods. The semivariograms for pH(H2O), pH(CaCl2), Ca, Mg and K were calculated according to spherical models, whereas the phosphorus showed a nugget effect. The cross semi-variograms showed correlations between pH(H2O) and pH(CaCl2) with other variables with spatial dependence (exchangeable Ca and Mg and available K). The spatial variability maps for the pH(H2O), pH(CaCl2), Ca, Mg and K concentrations also showed similar patterns of spatial variability, indicating that burning the vegetation after deforestation caused a well-defined spatial arrangement. Even after 20 years of use with agriculture, the spatial distribution of pH(H2O), pH(CaCl2), Ca, Mg and available K was affected by the wood windrow burning that took place during the initial deforestation.


Author(s):  
Xiangxue Zhao ◽  
Shapour Azarm ◽  
Balakumar Balachandran

Online prediction of dynamical system behavior based on a combination of simulation data and sensor measurement data has numerous applications. Examples include predicting safe flight configurations, forecasting storms and wildfire spread, estimating railway track and pipeline health conditions. In such applications, high-fidelity simulations may be used to accurately predict a system’s dynamical behavior offline (“non-real time”). However, due to the computational expense, these simulations have limited usage for online (“real-time”) prediction of a system’s behavior. To remedy this, one possible approach is to allocate a significant portion of the computational effort to obtain data through offline simulations. The obtained offline data can then be combined with online sensor measurements for online estimation of the system’s behavior with comparable accuracy as the off-line, high-fidelity simulation. The main contribution of this paper is in the construction of a fast data-driven spatiotemporal prediction framework that can be used to estimate general parametric dynamical system behavior. This is achieved through three steps. First, high-order singular value decomposition is applied to map high-dimensional offline simulation datasets into a subspace. Second, Gaussian processes are constructed to approximate model parameters in the subspace. Finally, reduced-order particle filtering is used to assimilate sparsely located sensor data to further improve the prediction. The effectiveness of the proposed approach is demonstrated through a case study. In this case study, aeroelastic response data obtained for an aircraft through simulations is integrated with measurement data obtained from a few sparsely located sensors. Through this case study, the authors show that along with dynamic enhancement of the state estimates, one can also realize a reduction in uncertainty of the estimates.


CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Allan Libanio Pelissari ◽  
Marcelo Roveda ◽  
Sidney Fernando Caldeira ◽  
Carlos Roberto Sanquetta ◽  
Ana Paula Dalla Corte ◽  
...  

ABSTRACT Considering the hypothesis that the wood volumes present spatial dependence, whose knowledge contributes for the precision forestry, the aim of this work was to estimate the volume spatial variability for timber assortments and identify their spatial patterns on Tectona grandis stands. A dataset of 1,038 trees was used to fit taper models and estimate the total stem, sawlog, and firewood volumes in 273 plots allocated on T. grandis stands at eight years old, which represents the second thinning that enables commercial volumes. Semivariograms models was applied to fit the spatial dependence, and punctual kriging was used to compose volume maps. Geostatistical modeling allowed us to estimate the T. grandis spatial variability and develop timber volume maps. Thus, silvicultural treatments, such as thinning and pruning, as well as for planning spatial interventions, are possible to be recommended for aimed wood products.


Sign in / Sign up

Export Citation Format

Share Document