Effect of Quarls on the Blowout Stability and Emission of Pollutants of a Liquid-Fueled Swirl Burner

Author(s):  
Viktor Józsa ◽  
Attila Kun-Balog

Stringent emissions standards for NOx and carbon monoxide (CO) prompt lean combustor development. With this motivation, combustion stability issues emerge since the desired operating point approaches the lean blowout limit. In this paper, an atmospheric, 15 kW lean premixed prevaporizing-type swirl burner, equipped with a plain jet airblast atomizer, was investigated at various atomizing pressures and combustion air flow rates, using quarls from 0 deg to 60 deg in 15 deg steps. Both the 15 deg and the 30 deg quarls provided a 42% higher lean blowout stability on average in terms of mean mixing tube discharge velocity, compared to the baseline burner. However, the superior stability regime was encumbered by a rapidly increasing CO emission. In parallel, the NOx emission vanished due to the more dilution air and incomplete combustion. The 60 deg quarl provided a moderately extended blowout stability limitation, while the NOx emission slightly increased and the CO emission reduced compared to the baseline burner.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1681
Author(s):  
Yixiang Yuan ◽  
Qinghua Zeng ◽  
Jun Yao ◽  
Yongjun Zhang ◽  
Mengmeng Zhao ◽  
...  

Aiming at the problem of the narrow combustion stability boundary, a conical swirler was designed and constructed based on the concept of fuel distribution. The blowout performance was studied at specified low operating conditions by a combination of experimental testing and numerical simulations. Research results indicate that the technique of the fuel distribution can enhance the combustion stability and widen the boundary of flameout within the range of testing conditions. The increase of the fuel distribution ratio improves the combustion stability but leads to an increase in NOx emission simultaneously. The simulation results show the increase of the fuel distribution ratio causes contact ratio increase in the area of lower reference velocity and gas temperature increase. The increased contact ratio and temperature contribute to the blowout performance enhancement, which is identical to the analysis result of the Damkohler number. The reported work in this paper has potential application value for the development of an industrial burner and combustor with high stability and low NOx emission, especially when the combustion system is required to be stable and efficient at low working conditions.


Author(s):  
L. Rosentsvit ◽  
Y. Levy ◽  
V. Erenburg ◽  
V. Sherbaum ◽  
V. Ovcharenko ◽  
...  

The present work is concerned with improving combustion stability in lean premixed (LP) gas turbine combustors by injecting free radicals into the combustion zone. The work is a joint experimental and numerical effort aimed at investigating the feasibility of incorporating a circumferential pilot combustor, which operates under rich conditions and directs its radicals enriched exhaust gases into the main combustion zone as the means for stabilization. The investigation includes the development of a chemical reactors network (CRN) model that is based on perfectly stirred reactors modules and on preliminary CFD analysis as well as on testing the method on an experimental model under laboratory conditions. The study is based on the hypothesis that under lean combustion conditions, combustion instability is linked to local extinctions of the flame and consequently, there is a direct correlation between the limiting conditions affecting combustion instability and the lean blowout (LBO) limit of the flame. The experimental results demonstrated the potential reduction of the combustion chamber's LBO limit while maintaining overall NOx emission concentration values within the typical range of low NOx burners and its delicate dependence on the equivalence ratio of the ring pilot flame. A similar result was revealed through the developed CHEMKIN-PRO CRN model that was applied to find the LBO limits of the combined pilot burner and main combustor system, while monitoring the associated emissions. Hence, both the CRN model, and the experimental results, indicate that the radicals enriched ring jet is effective at stabilizing the LP flame, while keeping the NOx emission level within the characteristic range of low NOx combustors.


2012 ◽  
Vol 512-515 ◽  
pp. 1888-1891
Author(s):  
Jia Yi Du ◽  
Wei Xun Zhang ◽  
Deng Pan Zhang ◽  
Zhen Yu Sun

The influence of cetane number improver on emission characteristics of diesel engine fueled with methanol/diesel blend fuel was investigated. Methanol/diesel blend fuel was prepared, in which the methanol content is 10%, different mass fraction (0%,0.5%) of cetane number improver were added to the blend fuel. Load characteristic experiments at maximum torque speed of the engine were carried out on 4B26 direct injection diesel engine. The results show that, compared with the engine fueled with diesel, the CO emission increases under low loads and reduces under medium and high loads, the HC emission increases, the NOx emission decreases under medium and low loads and increases under high loads, the soot emission reduces significantly when the diesel engine fueled with blends. When cetane number improver was added to blends, the CO and NOx emission reduces, the HC emission decreases, the soot emission increases to some extent compared with the methanol/dieselblend fuel without cetane number improver.


Author(s):  
Arijit Bhattacharya ◽  
Bikash Gupta ◽  
Satyajit Hansda ◽  
Zohadul Haque ◽  
Ashish Kumar ◽  
...  

Abstract Strict emission norms in the last few decades have paved the path for adaptation of new low NoX emission alternatives to power generation and aircraft propulsion. Lean combustion is a very promising and practicable technology for reducing NOX reduction and also have very high fuel efficiency. However, lean combustion technology suffers from inherent combustion instabilities that are manifested under different conditions, most importantly, thermoacoustic instability and lean blowout. Lean blowout occurs when a gas turbine combustor operating close to lean limit, for lowest NoX emission, faces abrupt changes in fuel homogeneity, quality or flow rate. While many work have been done in thermo-acoustic instability and flame propagation in annular combustors, studies in lean blowout in annular combustors are very limited. The lean limit of combustors are not fixed and is dependent on fuel characteristics and operating condition including environmental effects. So accurate online prediction of lean limit is very important to keep the combustors operating safely near lean limit. Recent works have demonstrated that single burner combustors leave out a significant amounts of physics including interaction of flames from different burners prior to blowout. In this work, a stepped down swirl and bluff body stabilized annular combustor in CB configuration (having chamber and burner), is used as experimental test rig having 4 number of identical burners. Video and heat release data are taken at different conditions as lean blowout is approached. Frequent attachment and reattachment of the flames prior to lift off was seen. As lean blowout is approached, inherent subtle differences in the different burners get amplified when flame becomes sufficiently weak and flame symmetry is broken. As air fuel mixture is made gradually leaner, one by one the flames from different burners elongates although remains partially attached to burner. Further lowering the equivalence ratio results in lift off and merging of the flame fronts of different burners. Three pixel averaged color ratios are extracted from still camera RGB images as flame stability indicators which are, red by blue, red by green and blue by green. The parameters show marked change at the point of lift off as well as at the lean blowout point.


Author(s):  
Somnath De ◽  
Prasanna Mondal ◽  
Gourav Manohar Sardar ◽  
Rakin Bin Bokhtiar ◽  
Arijit Bhattacharya ◽  
...  

Abstract The main problem for using reliable and stable diffusion combustion in modern gas turbine engines is the production of NOx at a higher level which is not permissible for maintaining the healthy environment. Thus, combustion in lean premixed mode has become the most promising technology in many applications related to power generation gas turbine, industrial burner etc. Although the lean combustion minimizes NOx production, it suffers from an increased risk of lean blowout (LBO) when the requirement of thrust or load is low. It mainly occurs at the lean condition when the equilibrium between the flame speed and the unburnt air-fuel mixture velocity is broken. Current aircraft gas turbine engines operate fuel close to the combustion chamber which leads to the partially premixed combustion. Partially premixed combustion is also susceptible to lean blowout. Therefore, we have designed a swirl-stabilized dump combustor, where different lengths of fuel-air mixing are available. Our present work aims at improving the combustion stability by incorporating a secondary fuel injection through a pilot arrangement connected with the combustion chamber for premixed as well as partially premixed flames. Incorporation of the pilot system adds a small fraction of the total fuel into the combustion chamber directly. This investigation shows significant extension of the LBO limit towards leaner fuel-air mixture while the NOx emission in the combustion chamber is within the permissible limit. This result can be used for aircraft operators during the process of landing when fuel supply has to be decreased to reduce engine thrust or for power plants operating at low loads. The study of control is based on the colour variation of the flame which actually defines the changes in combustion characteristics. For early detection of LBO, the ratio between the intensity of red and blue colour obtained from flame images with a high speed camera is used. As LBO is approached, the ratio of red to blue intensity falls monotonically. When the ratio falls below a preset threshold, a small fraction of the total fuel is added to the central pilot line. This strategy allows the LBO limit to be shifted to a much lower equivalence ratio (maximum 20% and 11% for fully premixed and least premixed flames, respectively) without any significant increase in NOx production. The analysis includes a feedback control algorithm which is computed in MATLAB and the code is embedded in Labview for hardware implementation.


2014 ◽  
Vol 660 ◽  
pp. 397-401 ◽  
Author(s):  
Mohd Fareez Edzuan bin Abdullah ◽  
Mohd Hisyamuddin bin Sulaiman ◽  
Noor Aliah Binti Abdul Majid

This paper discusses the nitrogen oxides (NOx) emission characteristics of compression ignition diesel engine operating on diesel fuel blends with different saturation degrees of biofuel and with methanol. In order to investigate the dominant factor of increased NOx in biofuels, diesel combustion tests were conducted under idling condition and the tailpipe exhaust emissions were measured by a flue gas analyzer. The general trend where NOx emission increased and reduced carbon monoxide (CO) emission in the biofuel and methanol blend cases were observed. The NOx emission levels increased as the biofuel saturation degree decreased, where it may be suggested that the prompt NOx mechanism is significant in total NOx formation of biofuel combustion process.


2014 ◽  
Vol 1044-1045 ◽  
pp. 299-304
Author(s):  
Ming Wei Xiao ◽  
Jun Han Zhang ◽  
Ting Ting Chen

The paper studied the effect of fuel injection pressure and fuel supply advance angle on characteristics of butanol diesel blend engine.First,the results shows that when the volume ratio of butanol diesel is constant ,the fuel consumption and HC emission are the least under 20°CA.With increase of fuel supply advance angle ,the exhaust smoke emission and CO emission decreased largely under high load, but NOX emission increased largely. When the fuel supply advance angle is constant ,with the increase of volume ratio of butanol diesel ,the fuel consumption increased gradually, the exhaust smoke emission decreased largely, HC emission increased clearly, CO emission decreased largely but NOX emission increased.Third,with increase of fuel injection pressure,the exhaust smoke emission decreased largely ,NOx emission changed a little ,CO and HC emission increased largely.


Author(s):  
Yiheng Tong ◽  
Mao Li ◽  
Marcus Thern ◽  
Jens Klingmann

Swirl stabilized premixed flames are common in industrial gas turbines. The flame shape in the combustor is highly related to the combustion stability and the performance of the gas turbine. In the current paper, the effects of confinement on the time averaged flame structures or flame macrostructures are studied experimentally. Experiments are carried out with swirl number S = 0.66 in two cylindrical confinements with diameters of d1 = 39 mm and d2 = 64 mm and confinement ratio c1 = 0.148 and c2 = 0.0567. All the experiments were carried out in atmospheric. CH∗ chemiluminescence from the flame was recorded to visualize the flame behavior. An inverse Abel image reconstruction method was employed to better distinguish the flame macrostructures. Different mechanisms forming the time averaged M shape flames are proposed and analyzed. It is found that the confinement wall plays an important role in determining the flame macrostructures. The flow structures including the inner and outer recirculation zones formed in the confinement are revealed to be the main reasons that affects different flame macrostructures. Meanwhile, the alternation of flame shapes determines the flame stability characteristics. A smaller confinement diameter forced the flame front to bend upstream into the outer recirculation zone hence forming a M shape flame. A strong noise caused by the interaction of the flame front in the outer recirculation zone with the combustor wall was observed. Another unsteady behavior of the flame in the bigger combustor, which was caused by the alternation of the flame root position inside and outside the premixing tube, is also presented. The V shape flame in the two combustors radiated weaker chemiluminescence but the main heat release zone was elongated than the M shape flame. Other operating conditions, i.e. total mass flow rate of the air flow and the equivalence ratio also affect the flame macrostructures. The flame blowout limits were also altered under different test conditions. The bigger confinement has better performance in stabilizing the flame by having lower lean blowout limits.


Author(s):  
A. Marosky ◽  
V. Seidel ◽  
T. Sattelmayer ◽  
F. Magni ◽  
W. Geng

In most dry, low-NOx combustor designs of stationary gas turbines, the front panel impingement cooling air is directly injected into the combustor primary zone. This air partially mixes with the swirling flow of premixed reactants from the burner and reduces the effective equivalence ratio in the flame. However, local unmixedness and the lean equivalence ratio are supposed to have a major impact on combustion performance. The overall goal of this investigation is to answer the question of whether the cooling air injection into the primary combustor zone has a beneficial effect on combustion stability and NOx emissions or not. The flame stabilization of a typical swirl burner with and without front panel cooling air injection is studied in detail under atmospheric conditions close to the lean blowout limit (LBO) in a full-scale, single-burner combustion test rig. Based on previous isothermal investigations, a typical injection configuration is implemented for the combustion tests. Isothermal results of experimental studies in a water test rig adopting high-speed planar laser-induced fluorescence (HSPLIF) reveal the spatial and temporal mixing characteristics for the experimental setup studied under atmospheric combustion. This paper focuses on the effects of cooling air injection on both flame dynamics and emissions in the reacting case. To reveal dependencies of cooling air injection on combustion stability and NOx emissions, the amount of injected cooling air is varied. OH*-chemiluminescence measurements are applied to characterize the impact of cooling air injection on the flame front. Emissions are collected for different cooling air concentrations, both global measurements at the chamber exit, and local measurements in the region of the flame front close to the burner exit. The effect of cooling air injection on pulsation level is investigated by evaluating the dynamic pressure in the combustor. The flame stabilization at the burner exit changes with an increasing degree of dilution with cooling air. Depending on the amount of cooling, only a specific share of the additional air participates in the combustion process.


2011 ◽  
Vol 347-353 ◽  
pp. 3821-3825 ◽  
Author(s):  
Yong Zhang Cui ◽  
Guang Peng Li ◽  
Wei Guang Xu ◽  
Jian Bin Zhu

NOx and CO emissions of fuel rich-lean flame of natural gas water heaters were experimentally investigated. Fuel-rich and fuel-lean flame with different air factors were analyzed separately. Emission of fuel-rich flame is CO whereas emission of fuel-lean is NOx, and fuel rich-lean ratio is the most important factor for NOx and CO emission. If fuel-rich flame α1 is changed with constant fuel-lean flame α2, NOx emission decreases and CO emission increases evidently. If α2 is changed with constant α1, NOx decreases slightly and CO increases initially and then decreases. Depressing fuel-lean flame can strengthen excess O2 diffusion to fuel-rich flame, and then reduces NOx and CO emissions.


Sign in / Sign up

Export Citation Format

Share Document