A Design for Additive Manufacturing Ontology to Support Manufacturability Analysis

Author(s):  
Samyeon Kim ◽  
David W. Rosen ◽  
Paul Witherell ◽  
Hyunwoong Ko

Design for additive manufacturing (DFAM) provides design freedom for creating complex geometries and guides designers to ensure the manufacturability of parts fabricated using additive manufacturing (AM) processes. However, there is a lack of formalized DFAM knowledge that provides information on how to design parts and how to plan AM processes for achieving target goals. Furthermore, the wide variety of AM processes, materials, and machines creates challenges in determining manufacturability constraints. Therefore, this study presents a DFAM ontology using the web ontology language (OWL) to semantically model DFAM knowledge and retrieve that knowledge. The goal of the proposed DFAM ontology is to provide a structure for information on part design, AM processes, and AM capability to represent design rules. Furthermore, the manufacturing feature concept is introduced to indicate design features that are considerably constrained by given AM processes. After developing the DFAM ontology, queries based on design rules are represented to explicitly retrieve DFAM knowledge and analyze manufacturability using Semantic Query-enhanced Web Rule Language (SQWRL). The SQWRL rules enable effective reasoning to evaluate design features against manufacturing constraints. The usefulness of the DFAM ontology is demonstrated in a case study where design features of a bracket are selected as manufacturing features based on a rule development process. This study contributes to developing a reusable and upgradable knowledge base that can be used to perform manufacturing analysis.

Author(s):  
Samyeon Kim ◽  
David W. Rosen ◽  
Paul Witherell ◽  
Hyunwoong Ko

Design for additive manufacturing (DFAM) provides design freedom for creating complex geometries and guides designers to ensure manufacturability of parts fabricated using additive manufacturing (AM) processes. However, there is a lack of formalized DFAM knowledge that provides information on how to design parts and how to plan AM processes for achieving target goals, e.g., reducing build-time. Therefore, this study presents a DFAM ontology using the web ontology language (OWL) to formalize DFAM knowledge and support queries for retrieving that knowledge. The DFAM ontology has three high level classes to represent design rules specifically: feature, parameter, and AM capability. Furthermore, the manufacturing feature concept is defined to link part design to AM process parameters. Since manufacturing features contain information on feature constraints of AM processes, the DFAM ontology supports manufacturability analysis of design features by reasoning with Semantic Query-enhanced Web Rule Language (SQWRL). The SQWRL rules in this study also help retrieve design recommendations for improving manufacturability. A case study is performed to illustrate usefulness of the DFAM ontology and SQWRL rule application. This study contributes to developing a knowledge base that can be reusable and upgradable and to analyzing manufacturing analysis to provide feedback about part designs to designers.


Author(s):  
Yuanbin Wang ◽  
Robert Blache ◽  
Xun Xu

Additive manufacturing (AM) has experienced a phenomenal expansion in recent years and new technologies and materials rapidly emerge in the market. Design for Additive Manufacturing (DfAM) becomes more and more important to take full advantage of the capabilities provided by AM. However, most people still have limited knowledge to make informed decisions in the design stage. Therefore, an interactive DfAM system in the cloud platform is proposed to enable people sharing the knowledge in this field and guide the designers to utilize AM efficiently. There are two major modules in the system, decision support module and knowledge management module. A case study is presented to illustrate how this system can help the designers understand the capabilities of AM processes and make rational decisions.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Floriane Laverne ◽  
Frédéric Segonds ◽  
Nabil Anwer ◽  
Marc Le Coq

Additive manufacturing (AM) is emerging as an important manufacturing process and a key technology for enabling innovative product development. Design for additive manufacturing (DFAM) is nowadays a major challenge to exploit properly the potential of AM in product innovation and product manufacturing. However, in recent years, several DFAM methods have been developed with various design purposes. In this paper, we first present a state-of-the-art overview of the existing DFAM methods, then we introduce a classification of DFAM methods based on intermediate representations (IRs) and product's systemic level, and we make a comparison focused on the prospects for product innovation. Furthermore, we present an assembly based DFAM method using AM knowledge during the idea generation process in order to develop innovative architectures. A case study demonstrates the relevance of such approach. The main contribution of this paper is an early DFAM method consisting of four stages as follows: choice and development of (1) concepts, (2) working principles, (3) working structures, and (4) synthesis and conversion of the data in design features. This method will help designers to improve their design features, by taking into account the constraints of AM in the early stages.


2021 ◽  
pp. 1-47
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
Mariusz Deja ◽  
Dawid Zielinski ◽  
Mohd Rizal Alkahari

Abstract The design for additive manufacturing (DFAM) processing was introduced to fully utilise the design freedom provided by additive manufacturing (AM). Consequently, appropriate design methodologies have become essential for this technology. Recently, many studies have identified the importance of DFAM method utilisation to produce AM parts, and TRIZ is a strategy used to formalise design methodologies. TRIZ is a problem-solving tool developed to assist designers to find innovative and creative solutions. However, the pathway for synergising TRIZ and DFAM is not clearly explained with respect to AM capabilities and complexities. This is mainly because most methods continue to involve use of the classical TRIZ principle, which was developed early in 1946, 40 years before AM technologies were introduced in the mid-1980s. Therefore, to tackle this issue, this study aims to enhance the 40 principles of classical TRIZ to accommodate AM design principles. A modified TRIZ-AM principle has been developed to define the pathway to AM solutions. TRIZ-AM cards are tools that assist designers to select inventive principles (IPs) in the early phases of product design and development. The case study illustrates that even inexperienced AM users can creatively design innovative AM parts.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
John Schmelzle ◽  
Eric V. Kline ◽  
Corey J. Dickman ◽  
Edward W. Reutzel ◽  
Griffin Jones ◽  
...  

Additive manufacturing (AM) of metallic parts provides engineers with unprecedented design freedom. This enables designers to consolidate assemblies, lightweight designs, create intricate internal geometries for enhanced fluid flow or heat transfer performance, and fabricate complex components that previously could not be manufactured. While these design benefits may come “free” in many cases, it necessitates an understanding of the limitations and capabilities of the specific AM process used for production, the system-level design intent, and the postprocessing and inspection/qualification implications. Unfortunately, design for additive manufacturing (DfAM) guidelines for metal AM processes are nascent given the rapid advancements in metal AM technology recently. In this paper, we present a case study to provide insight into the challenges that engineers face when redesigning a multicomponent assembly into a single component fabricated using laser-based powder bed fusion for metal AM. In this case, part consolidation is used to reduce the weight by 60% and height by 53% of a multipart assembly while improving performance and minimizing leak points. Fabrication, postprocessing, and inspection issues are also discussed along with the implications on design. A generalized design approach for consolidating parts is presented to help designers realize the freedoms that metal AM provides, and numerous areas for investigation to improve DfAM are also highlighted and illustrated throughout the case study.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Abstract Additive manufacturing (AM) processes offer unique capabilities (i.e., opportunities) yet inherent limitations (i.e., restrictions) due to the layer-by-layer fabrication of parts. Despite the newfound design freedom and increased use of AM, limited research has investigated how knowledge of the AM processes affects the creativity of students’ ideas after being exposed to AM. This study investigates this gap through an experimental study with 343 participants recruited from a junior-level mechanical engineering design course. The participants were exposed to three variations in design for additive manufacturing (DfAM) education: (1) no DfAM, (2) restrictive DfAM, and (3) opportunistic and restrictive (dual) DfAM education. The effects of these three interventions were measured through differences in (1) participants’ self-reported use of DfAM in a design challenge and (2) expert assessment of the creativity of the outcomes from the said design challenge. The results of the study indicated that variations in DfAM content did not result in differences in the participants’ self-reported use of either opportunistic or restrictive DfAM, with all three groups reporting similar levels of emphasis. Further, participants from all three groups reported higher use of restrictive DfAM techniques, compared with opportunistic DfAM. Moreover, while variations in the content had no effect on the creativity (uniqueness and usefulness) of the participants’ design outcomes, teaching both opportunistic and restrictive DfAM did result in the generation of designs with greater AM technical goodness—a novel and significant finding in our study. The results of this study highlight the need for DfAM educational interventions that encourage students to not only learn about but also integrate both opportunistic and restrictive concepts effectively into their creative design process. This would result in the generation of innovative products that leverage the design freedom enabled by AM, yet addressing the limitations inherent in the process.


2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


2021 ◽  
Vol 11 (6) ◽  
pp. 2572
Author(s):  
Stefano Rosso ◽  
Federico Uriati ◽  
Luca Grigolato ◽  
Roberto Meneghello ◽  
Gianmaria Concheri ◽  
...  

Additive Manufacturing (AM) brought a revolution in parts design and production. It enables the possibility to obtain objects with complex geometries and to exploit structural optimization algorithms. Nevertheless, AM is far from being a mature technology and advances are still needed from different perspectives. Among these, the literature highlights the need of improving the frameworks that describe the design process and taking full advantage of the possibilities offered by AM. This work aims to propose a workflow for AM guiding the designer during the embodiment design phase, from the engineering requirements to the production of the final part. The main aspects are the optimization of the dimensions and the topology of the parts, to take into consideration functional and manufacturing requirements, and to validate the geometric model by computer-aided engineering software. Moreover, a case study dealing with the redesign of a piston rod is presented, in which the proposed workflow is adopted. Results show the effectiveness of the workflow when applied to cases in which structural optimization could bring an advantage in the design of a part and the pros and cons of the choices made during the design phases were highlighted.


2021 ◽  
Author(s):  
Heena Noh ◽  
Kijung Park ◽  
Kiwon Park ◽  
Gül E. Okudan Kremer

Abstract Traditional plaster casts often cause dermatitis due to disadvantages in usability and wearability. Additive manufacturing (AM) can fabricate customized casts to have light-weight, high strength, and better air permeability. Although existing studies have provided design for additive manufacturing (DfAM) guidelines to facilitate design applications for AM, most relevant studies focused on the mechanical properties of outputs and too general/specific design guidelines; novice designers may still have difficulty understanding trade-offs between functional and operational performance of various DfAM aspects for medical casts. As a response, this study proposes a DfAM worksheet for medical casts to effectively guide novice designers. First, important DfAM criteria and their possible solutions for medical casts are examined through a literature review to construct a basic DfAM framework for medical casts. Next, a scoring system that considers relative criteria importance and criteria evaluation from both functional and operational perspectives is developed to identify the overall suitability of a medical cast design for AM. A case study of finger cast designs was performed to identify the DfAM performance of the sample designs along with redesign requirements suggested by the worksheet. The proposed worksheet would be used to achieve rapid medical cast design by objectively assessing its suitability for AM.


Author(s):  
Michael Barclift ◽  
Timothy W. Simpson ◽  
Maria Alessandra Nusiner ◽  
Scarlett Miller

Additive manufacturing (AM) provides engineers with nearly unlimited design freedom, but how much do they take advantage of that freedom? The objective is to understand what factors influence a designer’s creativity and performance in Design for Additive Manufacturing (DFAM). Inspired by the popular Marshmallow Challenge, this exploratory study proposes a framework in which participants apply their DFAM skills in sketching, CAD modeling, 3D-Printing, and a part testing task. Risk attitudes are assessed through the Engineering Domain-Specific Risk-Taking (E-DOSPERT) scale, and prior experiences are captured by a self-report skills survey. Multiple regression analysis found that the average novelty of the participant’s ideas, engineering degree program, and risk seeking preference were statistically significant when predicting the performance of their ideas in AM. This study provides a common framework for AM educators to assess students’ understanding and creativity in DFAM, while also identifying student risk attitudes when conducting an engineering design task.


Sign in / Sign up

Export Citation Format

Share Document