Modeling of Abraded Surface Roughness and Wear Resistance of Aluminum Matrix Composites

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Santanu Sardar ◽  
Susanta Kumar Pradhan ◽  
Santanu Kumar Karmakar ◽  
Debdulal Das

Tribological characterizations of composites are primarily focused on the evaluation of wear resistance (WR) and/or the coefficient of friction, although roughness of abraded surfaces (RASs) is one of the key factors that also determines tribo-performances. This study is aimed at modeling RAS in conjunction with WR considering experimental results of Al-matrix/alumina composites performed under two-body abrasion following the central composite design method. Influences of different in situ and ex situ parameters on tribo-responses were analyzed and modeled using analysis of variance, the response surface method, and multi-response optimization. The WR of the selected system was maximized at around 15 wt% alumina at which RAS was also the highest. The positive role of reinforcement on WR and its adverse effect on RAS were explained by micro-mechanisms of abrasion.

2013 ◽  
Vol 457-458 ◽  
pp. 131-134 ◽  
Author(s):  
Tao Fan ◽  
Cong Li Xiao ◽  
Yan Rong Sun ◽  
Hong Bo Li

The aim of this study is to investigate the effect of SiC particle pretreatment, aluminum matrix particle size and sintering temperature on relative density, hardness, microstructure and wear resistance to SiC particle einforced aluminum matrix composites. To this end, the amount of 16.7 wt.% SiC with average particle sizes 20μm was used along with pure aluminum of average particle size of 75 μm and 25μm. Powder metallurgy is a method used in the fabrication of this composite in which the powders were mixed using a planetary ball mill. By analyzing SEM micrograph and the Property test, it is concluded that SiC particle pretreatment has significant effect on the morphology of pecimens. pretreatment increase the interface adhesion, improve the wettability. SiC is uniformly distributed in the matrix, with good relation to the substrate, the maximum hardness is 51.1HB, the minimum wear rate is 0.1684%, while the density is 97.3%.For the same SiC content and particle size, the smaller the particle size of aluminum matrix is, the higher wear resistance of composite materials is on condition that others are same, the higher sintering temperature and the higher the wearability of composites, the wear resistance of the composite material is significantly improved after SiC pre-processing.The relative density increases with increasing aluminum matrix particle sizes under the same pressure and the holding time. The actual density of all samples reached the theoretical density over 96%, to a maximum of 98.9%.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ridvan Gecu ◽  
Ahmet Karaaslan

This study aims to investigate the effect of volume fraction of commercially pure titanium (CP-Ti) on microstructural, mechanical, and tribological features of A356 aluminum matrix composites. Vacuum-assisted melt infiltration casting was performed to produce composites with 50%, 65%, 75%, and 80% CP-Ti contents. CP-Ti sawdusts were assembled under mechanical pressure in order to attain porous one-piece CP-Ti preforms which were infiltrated by A356 melt at 730 °C under 10−5 Pa vacuum atmosphere. TiAl3 layer was formed at the interface between A356 and CP-Ti phases. Owing to increased diffusion time through decreased diffusion path length, both thickness and hardness of TiAl3 phase were increased with increasing CP-Ti ratio, whereas the best wear resistance was obtained at 65% CP-Ti ratio. The main reason for decrease in wear resistance of 75% and 80% CP-Ti reinforced composites was fragmentation of TiAl3 layer during wear process due to its excessively increased brittleness. Strongly bonded TiAl3 phase at the interface provided better wear resistance, while weakly bonded ones caused to multiply wear rate.


2017 ◽  
Vol 62 (2) ◽  
pp. 1235-1242 ◽  
Author(s):  
A. Lekatou ◽  
N. Gkikas ◽  
A.E. Karantzalis ◽  
G. Kaptay ◽  
Z. Gacsi ◽  
...  

AbstractAluminum matrix composites were prepared by adding submicron sized WC particles into a melt of Al 1050 under mechanical stirring, with the scope to determine: (a) the most appropriate salt flux amongst KBF4, K2TiF6, K3AlF6and Na3AlF6for optimum particle wetting and distribution and (b) the maximum carbide volume fraction (CVF) for optimum response to sliding wear. The nature of the wetting agent notably affected particle incorporation, with K2TiF6providing the greatest particle insertion. A uniform aluminide (in-situ) and WC (ex-situ) particle distribution was attained. Two different sliding wear mechanisms were identified for low CVFs (≤1.5%), and high CVFs (2.0%), depending on the extent of particle agglomeration.


2016 ◽  
Vol 684 ◽  
pp. 302-309 ◽  
Author(s):  
Aleksandr P. Amosov ◽  
Y.V. Titova ◽  
I.Y. Timoshkin ◽  
Antonina A. Kuzina

A review of the methods of obtaining and properties of aluminum matrix composites, discretely reinforced with ceramic particles and nanoparticles of aluminum nitride AlN, is given. The survey shows that at low weight, nanocomposites Al-AlN possess improved physical and mechanical properties, including at high temperatures up to 400-550°C, which makes them very attractive for applications in automotive, aerospace and semiconductor technology. However, due to the long duration and energy consumption, expensive and complicated equipment, low productivity of existing solid-phase methods of powder metallurgy and liquid-phase metallurgical processes of fabrication of nanocomposites of Al-AlN, there are not yet the mastered technologies of industrial production of these composites. Azide technology of self-propagating high-temperature synthesis (SHS-AZ) using sodium azide NaN3 as a solid nitriding reagent allows you to get relatively inexpensive nanopowder of aluminum nitride in the form of nanofibers along with side salt of cryolite Na3AlF6, which can play the role of flux when working with molten aluminum. A new simple ex-situ method of introduction of AlN particles in the molten aluminum alloy in the form of a composite master alloy obtained by fusing together a flux carnallite KCl·MgCl2 with AlN nanopowder mixed with cryolite Na3AlF6 was proposed. Results of experiments on the application of the proposed method for obtaining nanocomposite with matrix made of aluminum-magnesium alloy AlMg6 containing up to 1 % of the reinforcing phase AlN are presented.


Author(s):  
Memduh Kara ◽  
Tolga Coskun ◽  
Alper Gunoz

Aluminum is a material with advantageous properties such as lightness, good conductivity, high plastic deformation ability, and superior corrosion resistance. However, aluminum and many aluminum alloys have disadvantages in terms of mechanical properties such as hardness, tensile strength, and wear resistance. To overcome this disadvantage of aluminum, it is a good method to add ceramic particles to the matrix. For this purpose, in this study, B4C (boron carbide)-reinforced AA2014 aluminum matrix composites were fabricated at 3%, 5%, and 7% reinforcement ratios using the stir casting method. Tensile tests, wear tests, cutting force measurements, and microhardness measurements were performed to determine the fabricated composite materials’ mechanical properties. Scanning electron microscopy and optical microscopy were used to analyze the microstructure of composite. X-ray diffraction analysis was utilized to study the phase identification. As a result of the study, it was observed that with the increase in the B4C reinforcement ratio, the mechanical properties of the aluminum matrix composite material, such as wear resistance, cutting strength, and hardness, increased. On the other hand, the change in tensile strength did not occur in this way. Tensile strength first increased and then decreased. The highest value of tensile strength was achieved at 5% B4C reinforcement. X-ray diffraction results showed that AA2014 and B4C were the fundamental elements in composites and are free from intermetallics.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Yountae Shin ◽  
Huaping Xiao ◽  
Hong Liang

This paper explores new approaches in design and fabrication of novel composite materials in order to increase corrosion and wear resistance. By mimicking nature, nacreous particles from seashells were used as reinforcement in an aluminum matrix. A powder metallurgy process was developed to fabricate the nacreous-reinforced-aluminum matrix composites. Mechanical properties, corrosion, and wear resistance were characterized. Experimental results showed that the corrosion resistance increases as the nacreous concentration increases. The hardness and wear resistance increased by up to 22% and 10%, respectively. With oxidation of aluminum during heat treatment, the mentioned properties were further improved by about 32–37%.


2016 ◽  
Vol 25 (8) ◽  
pp. 3084-3090 ◽  
Author(s):  
Adam Klasik ◽  
Krystyna Pietrzak ◽  
Katarzyna Makowska ◽  
Jerzy Sobczak ◽  
Dariusz Rudnik ◽  
...  

10.30544/422 ◽  
2019 ◽  
Vol 25 (3) ◽  
pp. 195-208
Author(s):  
Nishith R Rathod ◽  
Jyoti Menghani

In the recent era, Metal Matrix Composites (MMCs) are one of the most vigorously studied topics in material science. Lightweight metals and its alloys create an intense attraction for tailoring new metal matrix composites to overcome conventional limitations like low strength. Aluminum metal matrix composites signify to the high-grade lightweight high-performance aluminum-based MMCs. The reinforcements in aluminum matrix composites could be in the form of particulates, whiskers, and continuous fiber or discontinuous fiber, where weight or volume fraction varies from a few percentages to 60%. Properties of aluminum metal matrix composites can be customized as per the demand of the industry by getting the appropriate combination of the metal matrix, reinforcements, and selective processing route. Nowadays many grads of aluminum matrix composites are fabricated by different routes where in situ route processing is more attractive compared with conventional ex-situ process because it delivers excellent wettability, thermally stability of reinforcements, the bonding strength between reinforcements and matrix, cohesive atomic structure, and fine grain size of reinforcements (specifically nano size). The devoted research work of aluminum matrix composites during the last three-decade generates a wealth of knowledge on the effect of reinforcements vis-à-vis mechanical, chemical, tribological properties of aluminum matrix composites. The acceptance of the aluminum matrix composites as engineering materials depends not only on the performance advantages of the composites, but it also depends upon the cheap, easy, and familiar fabrication technologies for these tailored materials.


Sign in / Sign up

Export Citation Format

Share Document