scholarly journals The Influence of Fan Root Flow on the Aerodynamic of a Low-Pressure Compressor Transition Duct

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
A. Duncan Walker ◽  
Ian Mariah ◽  
Dimitra Tsakmakidou ◽  
Hiren Vadhvana ◽  
Chris Hall

Abstract To reduce fuel-burn and emissions, there is a drive toward higher bypass ratio and smaller high-pressure ratio core engines. This makes the design of the ducts connecting compressor spools more challenging as the higher radius change increases aerodynamic loading. This is exacerbated at inlet to the engine core by fan root flow which is characterized by a hub-low-pressure profile and large secondary flow structures. Additionally, shorter, lighter nacelles mean that the intake may not provide a uniform inlet flow when the aircraft is at an angle of attack or subject to cross winds. Such inlet distortion can further degrade the flow entering the engine. A combination of experiments and computational fluid dynamics (CFD) has been used to examine the effects on the aerodynamics of an engine section splitter (ESS) and transition duct designed to feed the low-pressure spool of a high bypass ratio turbofan. A test facility incorporating a 1½ stage axial compressor was used to compare system performance for a flat rotor exit profile to one with a hub deficient flow. Validated Reynolds averaged Navier–Stokes (RANS) CFD was then used to further investigate the effects of increased inlet boundary layer thickness and bulk swirl distortion at rotor inlet. These changes were seen to have a surprisingly small effect on the flow at the duct exit. However, increased secondary flows were observed which degraded the performance of the ESS and significantly increased loss. Nevertheless, the enhanced mixing delayed separation in the duct suggesting that overall the design was reasonably robust albeit with increased system loss.

Author(s):  
A. D. Walker ◽  
I. Mariah ◽  
D. Tsakmakidou ◽  
H. Vadhvana ◽  
C. Hall

Abstract To reduce fuel-burn and CO2 emissions from aero gas turbines there is a drive towards very-high bypass ratio and smaller ultra-high-pressure ratio core engine technologies. However, this makes the design of the ducts connecting various compressor spools more challenging as the higher required radius change increases their aerodynamic loading. This is exacerbated for the duct which feeds the engine core as it must accept the relatively low-quality flow produced by the fan root. This is characterised by a hub-low pressure profile and large secondary flow structures which will inevitably increase loss and the likelihood of flow separation. Additionally, the desire for shorter, lighter nacelles means that the engine intake may be unable provide a uniform inlet flow to the fan when the aircraft is at an angle of attack or subject to cross winds. Any inlet distortion this generates can also further degrade the quality of the flow entering the core of the engine. This paper uses a combination of experiments and CFD to examine the effects of the inlet flow on the aerodynamics of an engine section splitter and transition duct designed to feed the low-pressure spool of a high bypass ratio turbofan. A fully annular test facility incorporating a 1½ stage axial compressor was used to compare the system performance of a rotor that produced a nominally flat profile with one that had a notably hub deficient flow. A RANS CFD model, employing a mixing plane between the rotor and Engine Section Stator (ESS) and a Reynolds Stress turbulence model, was then validated and used to further investigate the effects of increased inlet boundary layer thickness and bulk swirl distortion at rotor inlet. Overall, changes to the inlet condition were seen to have a surprisingly small effect on the flow at duct exit — i.e. the flow presented to the downstream compressor. Changes to the inlet did, however, generate increased secondary flows and degrade the performance of the ESS. This resulted in notably increased total pressure loss; in excess of 12% for the hub-low inlet and in excess of 30% at high inlet swirl where the flow in the ESS separated. However, the increased ESS wake structures, and the enhanced mixing, delayed separation in the duct suggesting that, overall the design was reasonably robust, albeit with a significant penalty in system loss.


Author(s):  
Dimitra Tsakmakidou ◽  
A. Duncan Walker ◽  
Chris Hall

Abstract To reduce fuel-burn and CO2 emissions from aero gas turbines there is a drive towards very-high bypass ratio and smaller ultra-high-pressure ratio core engine technologies. However, this makes the design of the ducts connecting various compressor spools more challenging as the larger required radius change increases their aerodynamic loading. This is exacerbated for the duct which feeds the engine core as it must accept the relatively low-quality flow produced by the fan root. This is characterised by a hub-low pressure profile and large secondary flow structures which will inevitably increase loss and the likelihood of flow separation. This paper presents a numerical design study aimed at modifying an existing fully annular, low-speed test facility to produce larger, more representative rotor loss cores. The CFD domain comprises a single stage axial compressor and transition duct representative of the low-pressure spool in a high bypass ratio turbofan. The rotating and stationary frames were coupled using a sliding mesh and a uRANS approach with Reynolds Stress closure for the turbulence modelling. The methodology was first validated using existing experimental data before examining a number of parameters such as inlet boundary layer thickness, inlet swirl, tip gap, blade solidity, thickness, lean. It was found that a combination of an increased inlet hub boundary layer and a reduction in solidity sufficiently increased the hub loading and encouraged the development of significantly large loss cores. Preliminary CFD results also showed that the increased rotor loss cores promoted better mixing through the outlet guide which subsequently reduced hub boundary layer thickness and secondary flows. Despite incurring a larger total pressure loss this suggested that the transition duct moved further from stall and could therefore potentially be made shorter.


2021 ◽  
Author(s):  
D. Tsakmakidou ◽  
I. Mariah ◽  
A. D. Walker ◽  
C. Hall ◽  
H. Simpson

Abstract The need to reduce fuel-burn and CO2 emissions, is pushing turbofan engines towards geared architectures with very high bypass-ratios and small ultra-high-pressure ratio core engines. However, this increases the radial offset between compressor spools and leads to a more challenging design for the compressor transition ducts. To minimise weight, these ducts must achieve the radial turning in as short a length, but this leads to strong curvature induced pressure gradients, increased aerodynamic loading and likelihood of flow separation. For the duct connecting the low-pressure fan to the engine core this is further complicated by the poor-quality flow generated at the fan hub which is characterised by low total pressure and large rotating secondary flow structures. In a previous paper the authors numerically designed modifications to an existing test facility such that the rotor would produce these large structures. The current paper presents an experimental evaluation of the new rotor design and examines the effect of the increased loss cores on the performance of a set of engine sector stators (ESS) or outlet guide vanes (OGV) and an engine representative compressor transition duct. Aerodynamic data were collected via miniature five-hole probes, for the time-averaged pressure and velocity field, and phase-locked hot-wire anemometry to capture the rotating secondary flows. Analysis of the experimental data showed that these structures promoted mixing through the ESS increasing the momentum exchange between the core and boundary layer flows. Measurements within the duct showed a continued reduction in the hub-wall boundary layer suggesting that the duct has been moved further from separation. Consequently, a more aggressive duct with 12.5% length reduction was designed and tested with the data confirming that the more aggressive duct remained fully attached. Total pressure loss data suggested a slight increase in loss over the vane row but that was offset by a reduced loss in the duct due to improved flow quality and reduced length. Overall, the 12.5% length reduction represents a significant cumulative effect in terms of reduced fuel burn and CO2 over the operational life of an engine.


Author(s):  
C. W. Haldeman ◽  
M. G. Dunn ◽  
R. S. Abhari ◽  
P. D. Johnson ◽  
X. A. Montesdeoca

The experimental program reported here was executed using full-scale vaneless counter-rotating engine hardware operating at nondimensionally scaled aerodynamic design point conditions. Measurements were obtained for three different pressure ratio values: design point, low pressure ratio, and high pressure ratio. For brevity, only the design point data will be presented in this paper. Time-averaged and time-resolved surface pressures on the high pressure turbine (HPT) vane, HPT blade, and low pressure turbine (LPT) blades are presented. Additionally, three-dimensional (3D) Navier-Stokes computational fluid dynamics (CFD) predictions are presented for comparison with experimental data. The results presented show that the predictions qualitatively capture the flowfield physics, but require some additional calibration to fully match experimental data quantitatively.


Author(s):  
Xiao-He Yang ◽  
Peng Shan

The design information and numerical investigation are presented for two kinds of counter-rotating fans. The fans, both vaneless and non-aspirated, are intended for a civil aviation engine with a bypass ratio of 8 and for a military engine with a bypass ratio of 0.5 respectively. The pressure ratios are respectively 1.60 and 3.50, and the tip speeds are (300 m/s, −222 m/s) and (500 m/s, −391 m/s). The design rotating speed ratio of the front to the aft rotor is discussed based on one-dimensional analysis. The variations in pressure ratios, isentropic efficiencies, diffusion losses and shock losses at mean-line with the design rotating speed ratios are studied. The flow fields of the two contra-stages are numerically simulated and the detailed flow physics is investigated at both design and off-design conditions. The simulations reveal that the two stages both perform well. The civil engine contra-stage test fans are still conventional transonic rotors due to the low pressure ratio and low tip speeds. For the military engine contra-stage, the aft rotor differs from the conventional transonic front rotor. It is a full-span relative supersonic rotor in which both the leading edge shock and the passage shock extend from the casing to the hub. At the stall point, for the low pressure ratio civil test fan, both the front and aft rotors are stalled and the shocks detached. In the corresponding high pressure ratio military fan, only the aft rotor is stalled which determines the stage stall point.


Author(s):  
Brian K. Kestner ◽  
Jeff S. Schutte ◽  
Jonathan C. Gladin ◽  
Dimitri N. Mavris

This paper presents an engine sizing and cycle selection study of ultra high bypass ratio engines applied to a subsonic commercial aircraft in the N+2 (2020) timeframe. NASA has created the Environmentally Responsible Aviation (ERA) project to serve as a technology transition bridge between fundamental research (TRL 1–4) and potential users (TRL 7). Specifically, ERA is focused on subsonic transport technologies that could reach TRL 6 by 2020 and are capable of integration into an advanced vehicle concept that simultaneously meets the ERA project metrics for noise, emissions, and fuel burn. An important variable in exploring the trade space is the selection of the optimal engine cycle for use on the advanced aircraft. In this paper, two specific ultra high bypass engine cycle options will be explored: advanced direct drive and geared turbofan. The advanced direct drive turbofan is an improved version of conventional turbofans. In terms of both bypass ratio and overall pressure ratio, the advanced direct turbofan benefits from improvements in aerodynamic design of its components, as well as material stress and temperature properties. By putting a gear between the fan and the low pressure turbine, a geared turbo fan allows both components to operate at optimal speeds, thus further improving overall cycle efficiency relative to a conventional turbofan. In this study, sensitivity of cycle design with level of technology will be explored, in terms of both cycle parameters (such as specific thrust consumption (TSFC) and bypass ratio) and aircraft mission parameters (such as fuel burn and noise). To demonstrate this sensitivity, engines will be sized for optimal performance on a 300 passenger class aircraft for a 2010 level technology tube and wing airframe, a N+2 level technology tube and wing air-frame, and finally on a N+2 level technology blended wing body airframe with and without boundary layer ingestion (BLI) engines.


Author(s):  
Hans-Jürgen Rehder ◽  
Andreas Pahs ◽  
Martin Bittner ◽  
Frank Kocian

Axial turbines for aircraft engines and power plants have reached a very high level of development. Further improvements, in particular in terms of higher efficiency and reduced number of blades and stages, resulting in higher loads, are possible, but can only be achieved through a better understanding of the flow parameters and a closer connection between experiment and numerical design and simulation. An analysis of future demands from the industry and existing turbine research rigs shows that there appears a need for a powerful turbine test rig for aerodynamic experiments. This paper deals with the development and built up of a new so called Next Generation Turbine Test Facility (NG-Turb) at the German Aerospace Center (DLR) in Göttingen. The NG-Turb is a closed-circuit, continuously running facility for aerodynamic turbine investigations, allowing independent variation of engine relevant Mach and Reynolds numbers. The flow medium (dry air) is driven by a 4-stage radial gear compressor with a high pressure ratio and a wide inlet volume flow range. In a first stage the NG-Turb test section will allow investigations on single shaft turbines up to 2½ stages. In a further expansion stage the NG-Turb will be equipped with a second independent shaft system, then enabling experiments with configurations of high and low (or intermediate) pressure turbines and in particular offering the possibility for investigations at counter rotating turbines. Secondary air for cooling investigations can be provided by auxiliary screw compressors. Mass flow through the Turbine is determined redundantly with an uncertainty of about ±0.3%, using well calibrated Venturi nozzles upstream and downstream of the test section. The operation concept and main design features of the NG-Turb will be described and an overview of the applied standard measurement and data acquisition technics capturing efficiency, traverse data etc. will be given. Thermodynamic cycle calculations have been performed in order to simulate the flow circuit of the NG-Turb and to access whether turbine operating points can be driven within the performance map of the compressor system. Finally the calibration procedure for the Venturi nozzles, which has been conducted during the commissioning phase of the NG-Turb by applying a special calibration test section, is explained and some results will be shown.


2003 ◽  
Vol 127 (4) ◽  
pp. 649-658 ◽  
Author(s):  
Jochen Gier ◽  
Bertram Stubert ◽  
Bernard Brouillet ◽  
Laurent de Vito

Endwall losses significantly contribute to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratios are increased. In turbines with shrouded airfoils a large portion of these losses are generated by the leakage flow across the shroud clearance. Generally the related losses can be grouped into losses of the leakage flow itself and losses caused by the interaction with the main flow in subsequent airfoil rows. In order to reduce the impact of the leakage flow and shroud design related losses a thorough understanding of the leakage losses and especially of the losses connected to enhancing secondary flows and other main flow interactions has to be understood. Therefore, a three stage LP turbine typical for jet engines is being investigated. For the three-stage test turbine 3D Navier-Stokes computations are performed simulating the turbine including the entire shroud cavity geometry in comparison with computations in the ideal flow path. Numerical results compare favorably against measurements carried out at the high altitude test facility at Stuttgart University. The differences of the simulations with and without shroud cavities are analyzed for several points of operation and a very detailed quantitative loss breakdown is presented.


Author(s):  
Senthil Krishnababu ◽  
Vili Panov ◽  
Simon Jackson ◽  
Andrew Dawson

Abstract In this paper, research that was carried out to optimise an initial variable guide vane schedule of a high-pressure ratio, multistage axial compressor is reported. The research was carried out on an extensively instrumented scaled compressor rig. The compressor rig tests carried out employing the initial schedule identified regions in the low speed area of the compressor map that developed rotating stall. Rotating stall regions that caused undesirable non-synchronous vibration of rotor blades were identified. The variable guide vane schedule optimisation carried out balancing the aerodynamic, aero-mechanical and blade dynamic characteristics gave the ‘Silent Start’ variable guide vane schedule, that prevented the development of rotating stall in the start regime and removed the non-synchronous vibration. Aerodynamic performance and aero-mechanical characteristics of the compressor when operated with the initial schedule and the optimised ‘Silent Start’ schedule are compared. The compressor with the ‘Silent Start’ variable guide vane schedule when used on a twin shaft engine reduced the start time to minimum load by a factor of four and significantly improved the operability of the engine compared to when the initial schedule was used.


Sign in / Sign up

Export Citation Format

Share Document