Ultra High Bypass Ratio Engine Sizing and Cycle Selection Study for a Subsonic Commercial Aircraft in the N+2 Timeframe

Author(s):  
Brian K. Kestner ◽  
Jeff S. Schutte ◽  
Jonathan C. Gladin ◽  
Dimitri N. Mavris

This paper presents an engine sizing and cycle selection study of ultra high bypass ratio engines applied to a subsonic commercial aircraft in the N+2 (2020) timeframe. NASA has created the Environmentally Responsible Aviation (ERA) project to serve as a technology transition bridge between fundamental research (TRL 1–4) and potential users (TRL 7). Specifically, ERA is focused on subsonic transport technologies that could reach TRL 6 by 2020 and are capable of integration into an advanced vehicle concept that simultaneously meets the ERA project metrics for noise, emissions, and fuel burn. An important variable in exploring the trade space is the selection of the optimal engine cycle for use on the advanced aircraft. In this paper, two specific ultra high bypass engine cycle options will be explored: advanced direct drive and geared turbofan. The advanced direct drive turbofan is an improved version of conventional turbofans. In terms of both bypass ratio and overall pressure ratio, the advanced direct turbofan benefits from improvements in aerodynamic design of its components, as well as material stress and temperature properties. By putting a gear between the fan and the low pressure turbine, a geared turbo fan allows both components to operate at optimal speeds, thus further improving overall cycle efficiency relative to a conventional turbofan. In this study, sensitivity of cycle design with level of technology will be explored, in terms of both cycle parameters (such as specific thrust consumption (TSFC) and bypass ratio) and aircraft mission parameters (such as fuel burn and noise). To demonstrate this sensitivity, engines will be sized for optimal performance on a 300 passenger class aircraft for a 2010 level technology tube and wing airframe, a N+2 level technology tube and wing air-frame, and finally on a N+2 level technology blended wing body airframe with and without boundary layer ingestion (BLI) engines.

Author(s):  
Brian Kestner ◽  
Jeff S. Schutte ◽  
Jimmy C. M. Tai ◽  
Christopher A. Perullo ◽  
Dimitri N. Mavris

This paper presents an engine sizing and cycle selection study of ultra high bypass ratio engines applied to a subsonic commercial aircraft in the N+2 (2025) timeframe. NASA has created the Environmentally Responsible Aviation (ERA) project to serve as a technology transition bridge between fundamental research (TRL 1–4) and potential commercial application (TRL 7). Specifically, ERA is focused on subsonic transport technologies that could reach TRL 6 by 2020 and can be integrated into an advanced vehicle concept to simultaneously meet the ERA project metrics for noise, emissions, and fuel burn. An important variable in exploring the technology trade space is the selection of the optimal engine cycle for use on the advanced aircraft. Previous literature demonstrated the cycle optimization using a design of experiments (DOE) to explore the engine cycle design space for a pre-defined technology package. However, since the optimal engine cycle is dependent upon the specific technology package, this process would have to be repeated to ensure optimal performance for each technology package. With more than 80 technologies to be analyzed, the combinatorial space of technology packages is enormous. As a result, executing a DOE to find the optimum engine cycle for each technology package is infeasible. To address this issue, it is proposed to use surrogate models that encompass the engine cycle and technology design space to enable fast and accurate optimization of the engine cycle for any given technology package. This paper describes the generation and analysis of surrogate models used for technology assessment and cycle optimization of an ultra high bypass geared turbofan engine architecture. The first study in the paper shows that a single surrogate model can be used to accurately simulate both a technology and cycle design space. To demonstrate the proposed surrogate modeling approach, the cycle design space for three different technology packages was analyzed. This study demonstrated that when an optimal cycle is found within the constrained interior of a design space, the surrogate modeling approach is quite accurate. The study also established that the surrogate models can also be used to assess potential cycles at the boundaries or even outside of the region for which they were trained.


Author(s):  
Joachim Kurzke

The potential for improving the thermodynamic efficiency of aircraft engines is limited because the aerodynamic quality of the turbomachines has already achieved a very high level. While in the past increasing burner exit temperature did contribute to better cycle efficiency, this is no longer the case with today’s temperatures in the range of 1900...2000K. Increasing the cycle pressure ratio above 40 will yield only a small fuel consumption benefit. Therefore the only way to improve the fuel efficiency of aircraft engines significantly is to increase bypass ratio — which yields higher propulsive efficiency. A purely thermodynamic cycle study shows that specific fuel consumption decreases continuously with increasing bypass ratio. However, thermodynamics alone is a too simplistic view of the problem. A conventional direct drive turbofan of bypass ratio 6 looks very different to an engine with bypass ratio 10. Increasing bypass ratio above 10 makes it attractive to design an engine with a gearbox to separate the fan speed from the other low pressure components. Different rules apply for optimizing turbofans of conventional designs and those with a gearbox. This paper describes various criteria to be considered for optimizing the respective engines and their components. For illustrating the main differences between conventional and geared turbofans it is assumed that an existing core of medium pressure ratio with a two stage high pressure turbine is to be used. The design of the engines is done for takeoff rating because this is the mechanically most challenging condition. For each engine the flow annulus is examined and stress calculations for the disks are performed. The result of the integrated aero-thermodynamic and mechanical study allows a comparison of the fundamental differences between conventional and geared turbofans. At the same bypass ratio there will be no significant difference in specific fuel consumption between the alternative designs. The main difference is in the parts count which is much lower for the geared turbofan than for the conventional engine. However, these parts will be mechanically much more challenging than those of a conventional turbofan. If the bypass ratio is increased significantly above 10, then the geared turbofan becomes more and more attractive and the conventional turbofan design is no longer a real option. The maximum practical bypass ratio for ducted fans depends on the nacelle drag and how the installation problems can be solved.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Francesco S. Mastropierro ◽  
Joshua Sebastiampillai ◽  
Florian Jacob ◽  
Andrew Rolt

Abstract This paper provides design and performance data for two envisaged year-2050 engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general arrangements, sizes, and weights. Reduced thrust requirements reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed to model the engines and details of individual components. The engines are optimized and compared with “baseline” year-2000 turbofans and an anticipated year-2025 open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with year-2050 “reference” engines, highlights tradeoffs between reduced specific fuel consumption (SFC) and increased engine weight and diameter. These parameters are converted into mission fuel burn variations using linear and nonlinear trade factors (NLTF). The final turbofan has an optimized design-point bypass ratio (BPR) of 16.8, and a maximum overall pressure ratio (OPR) of 75.4, for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometer compared to the respective “baseline” engine–aircraft combination. The open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometer relative to its baseline.


Author(s):  
Uwe L. H. Schmidt-Eisenlohr ◽  
Oliver E. Kosing

Turbofan engines for commercial aircraft will have to improve substantially in fuel burn, noise level and NOx emissions to fulfil the ACARE 2020 environmental goals. No doubt very high bypass ratios (VHBR) will be necessary to achieve the ambitious noise reduction targets. But weight and drag of the nacelle cannot increase further and under wing installation must always be feasible. Several innovative design options such as counter rotating turbo components, air breathing nacelle, and off axis core are presented and discussed in the paper which could help to overcome the increasing dimensions of the fan and the nacelle with increasing bypass ratio.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
A. Duncan Walker ◽  
Ian Mariah ◽  
Dimitra Tsakmakidou ◽  
Hiren Vadhvana ◽  
Chris Hall

Abstract To reduce fuel-burn and emissions, there is a drive toward higher bypass ratio and smaller high-pressure ratio core engines. This makes the design of the ducts connecting compressor spools more challenging as the higher radius change increases aerodynamic loading. This is exacerbated at inlet to the engine core by fan root flow which is characterized by a hub-low-pressure profile and large secondary flow structures. Additionally, shorter, lighter nacelles mean that the intake may not provide a uniform inlet flow when the aircraft is at an angle of attack or subject to cross winds. Such inlet distortion can further degrade the flow entering the engine. A combination of experiments and computational fluid dynamics (CFD) has been used to examine the effects on the aerodynamics of an engine section splitter (ESS) and transition duct designed to feed the low-pressure spool of a high bypass ratio turbofan. A test facility incorporating a 1½ stage axial compressor was used to compare system performance for a flat rotor exit profile to one with a hub deficient flow. Validated Reynolds averaged Navier–Stokes (RANS) CFD was then used to further investigate the effects of increased inlet boundary layer thickness and bulk swirl distortion at rotor inlet. These changes were seen to have a surprisingly small effect on the flow at the duct exit. However, increased secondary flows were observed which degraded the performance of the ESS and significantly increased loss. Nevertheless, the enhanced mixing delayed separation in the duct suggesting that overall the design was reasonably robust albeit with increased system loss.


Author(s):  
Joshua Sebastiampillai ◽  
Florian Jacob ◽  
Francesco S. Mastropierro ◽  
Andrew Rolt

Abstract The paper provides design and performance data for two envisaged year-2050 state-of-the-art engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general powerplant arrangements, sizes and weights. Reduced thrust requirements for future aircraft reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed, using the software PROOSIS, to model the engines and details of individual components, including custom elements for the open rotor engine. The engines are optimised and compared with ‘baseline’ year-2000 turbofans and an anticipated year-2025 entry-into-service open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with non-optimised year-2050 ‘reference’ engines, based on Top-of-Climb (TOC) thrust and bypass ratio, highlights the trade-offs between reduced specific fuel consumption (SFC) and increased weight and engine diameter. These parameters are then converted into mission fuel burn using linear and non-linear trade factors from aircraft models. The final turbofan has an optimised design-point bypass ratio (BPR) of 16.8, and a maximum overall pressure ratio (OPR) of 75.4 for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometre compared to the respective year-2000 baseline engine and aircraft combination. The final open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in aircraft passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometre relative to its year-2000 baseline.


1970 ◽  
Author(s):  
K. B. Amer ◽  
R. J. Sullivan

This paper presents the results of engine/rotor matching studies for a pressure-jet tip-propulsion system for a large helicopter. When matching engine/airplane characteristics, it is standard practice to study the effects of cycle pressure ratio, turbine temperature, and fan bypass ratio. For a helicopter pressure-jet tip-propulsion system, in addition to engine cycle studies a more sophisticated matching analysis must be conducted because of the interacting effects of rotor characteristics (radius, chord, tip speed, airfoil thickness ratio) on propulsive efficiency as well as on weight and aerodynamic efficiency. The results of the study are compared with results for conventional shaft-drive propulsion systems for a short-range heavy-lift helicopter mission.


Author(s):  
Chorng-Yow Chen ◽  
Mark H. Waters ◽  
Dimitri Mavris

Turbofan engines are designed with two or even three spools of fan- compressor and turbine combinations. This arrangement allows the possibility of increased power output by placing a second combustor between turbine spools. Such a combustor is called an “Intermediate Turbine Burner, ITB,” and in a twin spool turbofan engine the combustor would be placed between the discharge of the high pressure turbine and the entrance of the low pressure turbine. An evaluation of the mechanical design of an ITB integrated into a low bypass ratio mixed flow turbofan is the subject of this paper. It is well known that an engine with an ITB has increased specific thrust but at the expense of increased specific fuel consumption. To take advantage of the ITB potential, the choice of cycle parameters — fan pressure ratio, overall pressure ratio and bypass ratio must be evaluated, and recent studies have demonstrated that the turbofan cycle with an ITB should have increased fan and overall pressure ratios to maximize performance. However, little has been done to estimate the weight and dimensions of an ITB integrated engine including the weight, flow path area and length of the ITB. Of particular concern are the volume and resulting flow path area and length required for the ITB.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Binglong Zhang ◽  
He Liu ◽  
Jianhua Zhou ◽  
Hui Liu

AbstractThe forward variable area bypass injector (FVABI) is a key component of double bypass variable cycle engine (VCE) to achieve mode transition and bypass ratio adjustment. In this paper, an experimental system for FVABI was constructed based on the analysis of relevant experimental theories, and then the experiments on FVABI were carried out for a specific working state in double bypass mode of VCE and for the comparison working states with different area ratios and different back pressure ratios. The results showed that the FVABI designed in this paper meets the requirements of VCE at this working state. The analysis of the influence of area ratio and back pressure ratio on the injection coefficient showed that the first bypass valve and back pressure were effective means to control the mass flow of FVABI.


Author(s):  
J. T. Schmitz ◽  
S. C. Morris ◽  
R. Ma ◽  
T. C. Corke ◽  
J. P. Clark ◽  
...  

The performance and detailed flow physics of a highly loaded, transonic, low-pressure turbine stage has been investigated numerically and experimentally. The mean rotor Zweifel coefficient was 1.35, with dh/U2 = 2.8, and a total pressure ratio of 1.75. The aerodynamic design was based on recent developments in boundary layer transition modeling. Steady and unsteady numerical solutions were used to design the blade geometry as well as to predict the design and off-design performance. Measurements were acquired in a recently developed, high-speed, rotating turbine facility. The nozzle-vane only and full stage characteristics were measured with varied mass flow, Reynolds number, and free-stream turbulence. The efficiency calculated from torque at the design speed and pressure ratio of the turbine was found to be 90.6%. This compared favorably to the mean line target value of 90.5%. This paper will describe the measurements and numerical solutions in detail for both design and off-design conditions.


Sign in / Sign up

Export Citation Format

Share Document