Stern Flap–Waterjet–Hull Interactions and Mechanism: A Case of Waterjet-Propelled Trimaran With Stern Flap

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Lei Zhang ◽  
Jianing Zhang ◽  
Yuchen Shang

Abstract To research the stern flap (SF) and waterjet–hull interaction, unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for a waterjet-propelled trimaran considering sinkage and trim are performed. Uncertainty analysis of the numerical results for the bare hull (BH) model is presented. At the design speed Froude number (Fr) of 0.6 and under displacement state, the model-scaled trimaran, installed with stern flaps of varied angle and length, tests the BH and self-propulsion (SP) performance based on URANS simulations. For the resistance, the global effects due to motions and the local effects of SF, waterjets (WJ), and the coupled term between SF and WJ on the hull are separately analyzed. Taking the waterjet propulsion system into account, an SP model with reasonable stern flap effectively reduces the trim, the resistance acting on the hull and the waterjet thrust deduction which contributes to energy-saving and high-efficiency propulsion. The mechanism of the improved performance of the waterjet-propelled trimaran with stern flaps is discussed. For the resistance increment, the global effects, the local effects of SF and WJ are the major reason for resistance increase, and the nonlinear coupled term of local effects contributes to the resistance reduction most. In addition, the different resistance components of frictional, hydrostatic, and hydrodynamic are separately researched, which shows that the pressure resistance components plays a leading role in the total resistance reduction in the SP model with the suitable SF.

2021 ◽  
Author(s):  
Shuhui Jiang ◽  
Li Zhang ◽  
Weimin Chen

Abstract A new optimized hull form was proceeded based on a parent ship 60000 DWT bulk carrier. The goal of optimization is to obtain better resistance performance in the loading conditions of scantling draught and design draught. Firstly, the numerical simulation of the parent ship was carried out, the flow field information around the hull was analyzed, the area of high or low pressure was checked, and the area was optimized to make the pressure distribution more uniform. At the same time, the bow entrance section was optimized to reduce the wave-making resistance, and the length of the run body was lengthened to reduce the flow separation area and the viscous pressure resistance. Aiming at these above optimization objectives, the deformation range of hull form was set by commercial software CAESES, and the total resistance of generated optimized cases was solved by SHIPFLOW and evaluated by STARCCM+ software. To grantee the resistance reduction at both design draught and scantling draught, by using the operation profile optimization method, the resistance weights of scantling draught and design draught were set as 50% respectively, that is, the total resistance of optimized hull form equals 50% resistance of design draught condition and 50% resistance of scantling draught condition. The optimization results of total resistance were compared and analyzed, and the cases with relatively minimum total resistance were obtained. On this basis, the wake field at the propeller disk was optimized either, and finally, the target optimization of hull form was obtained. The numerical results showed that, compared with the parent ship, the total resistance at the design speed of the design draught was reduced by about 1.64%, about 2.10% at the design speed of the scantling draught. The wake distribution on the propeller area was more uniform. The final optimized hull form meets the target requirements.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Mara Camaiti ◽  
Villiam Bortolotti ◽  
Yijian Cao ◽  
Alessandra Papacchini ◽  
Antonella Salvini ◽  
...  

The protection of stone cultural assets is related to the transformation of the surface characteristic from hydrophilic to hydrophobic/superhydrophobic through the application of a coating. The suitability of a coating depends not only on its capability to dramatically change the surface wettability, but also on other parameters such as the modification of kinetics of water absorption, the permanence of vapor diffusivity, the resistance of the coating to aging and the low volatile organic compound emissions during its application. In this work, an oligo(ethylensuccinamide) containing low molecular pendant perfluoropolyether segments (SC2-PFPE) and soluble in environmentally friendly solvents was tested as a protective agent for historic stone artifacts. Magnetic resonance imaging and relaxometry were employed to evaluate the effects of the surface wettability change, to follow the water diffusion inside the rock and to study the porous structure evolution after the application of SC2-PFPE. A sun-like irradiation test was used to investigate the photo-stability of the product. The results demonstrate that the highly photo-stable SC2-PFPE minimizes the surface wettability of the stone by modifying the water sorptivity without significantly affecting its porous structure and vapor diffusivity. The improved performance of SC2-PFPE in comparison to other traditional coatings makes it a potential candidate as an advanced coating for stone cultural heritage protection.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Burhan Khurshid ◽  
Roohie Naaz Mir

Generalized parallel counters (GPCs) are used in constructing high speed compressor trees. Prior work has focused on utilizing the fast carry chain and mapping the logic onto Look-Up Tables (LUTs). This mapping is not optimal in the sense that the LUT fabric is not fully utilized. This results in low efficiency GPCs. In this work, we present a heuristic that efficiently maps the GPC logic onto the LUT fabric. We have used our heuristic on various GPCs and have achieved an improvement in efficiency ranging from 33% to 100% in most of the cases. Experimental results using Xilinx 5th-, 6th-, and 7th-generation FPGAs and Stratix IV and V devices from Altera show a considerable reduction in resources utilization and dynamic power dissipation, for almost the same critical path delay. We have also implemented GPC-based FIR filters on 7th-generation Xilinx FPGAs using our proposed heuristic and compared their performance against conventional implementations. Implementations based on our heuristic show improved performance. Comparisons are also made against filters based on integrated DSP blocks and inherent IP cores from Xilinx. The results show that the proposed heuristic provides performance that is comparable to the structures based on these specialized resources.


2015 ◽  
Author(s):  
Manivannan Kandasamy ◽  
Ping C. Wu ◽  
Scott Bartlett ◽  
Loc Nguyen ◽  
Frederick Stern

The US Navy is currently considering the introduction of a Flight III variant beginning with DDG-123 in Fiscal Year 2016. The new design incorporates a new combat system and associated power and cooling upgrades. The overall system improvements increase the payload of the ship and the resulting increased displacement has a negative impact on the service life allowance for range, fuel consumption and sea-keeping characteristics. The present objective is to increase the hull displacement without resistance and sea-keeping penalty and with minimal modifications to the baseline DTMB-5415 design (open literature surrogate of the existing DDG-51 hull form) by using retrofitted blisters in the form of side hull expansions and a bow-bulb. The investigation makes use of high-performance CFD computing for analysis of wave cancellation mechanisms. A candidate modified 5415 design with both blisters and bow bulb shows a resistance reduction of ~11% w.r.t.the baseline 5415 in the design speed range of 15-19 knots, even though the displacement is increased by 8%, such that the transport factor is increased by 19%.


2015 ◽  
Vol 713-715 ◽  
pp. 2126-2132
Author(s):  
Da Ming Sun ◽  
Ji Yong Liu ◽  
Qing Wen Kong

A study on the navigation behavior for ships in shallow water had been carried out on CFD. The problem of surface ship hulls free of sinkage and trim in shallow water is analyzed numerically by simultaneously solving equations of the Reynolds averaged Navier-Stokes (RANS). The computations, based on the single-phase level set and overset grid, are discretized by finite volume method (FVM). An earth-based reference system is used for the solution to the fluid flow, while a ship-based reference is used to compute the rigid-body equations of motion. A S60 CB=0.6 ship model is taken as an example to the numerical simulation. Numerical results of the sinkage and trim of the seven Froude Numbers (Fn=0.5~0.8) are compared against experimental data, which have a good agreement.


Author(s):  
Hironobu Yamakawa

Cross flow fans are used for fan systems in a household room air conditioner indoor unit. In recently, in the view of environmental problem and cost saving, energy saving performance is important specification for users. Reducing fan motor electric power consumption is effective for this purpose. And also low noise fans are needed for comfortable circumferences. To meet these user needs, we developed a high efficiency and silent cross flow fan using CFD (Computational Fluid Dynamics) and experiments. In CFD, numerical model is calculated by commercial software using steady state, Reynolds-averaged Navier-Stokes (RANS) and k-ε turbulent flow model. The developed cross flow fan is geometrically characterized by the solidity (the ratio of the blade pitch and blade cord length) distribution, and the blade edge shape. The solidity average of developed fan was larger than the conventional fan and the solidity distribution was smooth. And the developed fan has the sinusoidal shape of the outer diameter edge. This sinusoidal shape edge makes pressure distribution on the tongue to be more dispersed compare to that of conventional straight edge so that tonal noise was restrained.


Author(s):  
K R Parker

Particulate control equipment for the larger industrial processes, which can effectively collect particles in the submicrometre range, is limited to the electrostatic precipitator and bag filter as cost effective methods. To meet ever decreasing emission levels, demanded by the Regulatory Agencies, the equipment suppliers and academics are involved in ongoing research and development activities in order to obtain a better understanding of the collection process itself, such as to achieve improved performance and, equally importantly, plant reliability and availability. This paper reviews some of the activities in the electrical, microelectronics, material sciences, fluid flow and finite element analysis fields and indicates how the findings are leading to new designs that are more reliable and also how the improvements are making the equipment more cost effective while operating at a higher performance level. Finally, with the concern over the emission of ‘air toxics’, while both the electrostatic precipitator and bag filter are established technology for effectively removing solid and liquid particulates with sizings well below 1 micrometre there is now an additional requirement for collecting vapour phase materials to meet the latest regulatory emission levels. Some ideas and approaches are examined which can prove effective in collecting the majority of materials classified as ‘air toxics’, such that the equipment will meet the existing and possible future emission standards.


2021 ◽  
Author(s):  
Hafizul Islam ◽  
C. Guedes Soares

Abstract The paper presents calm water and head wave simulation results for a KRISO Container Ship (KCS) model. All simulations have been performed using the open source CFD toolkit, OpenFOAM. Initially, a systematic verification study has been performed using the ITTC guideline to assess the simulation associated uncertainties. After that, a validation study has been performed to assess the accuracy of the results. Next, calm water simulations have been performed with sinkage and trim free condition at varying speeds. Later, head wave simulations have been performed with heave and pitch free motion. Simulations were repeated for varying wave lengths to assess the encountered added resistance by the ship in design speed. The results have been validated against available experimental data. Finally, power predictions have been made for both calm water and head wave cases to assess the required propulsion power. The paper tries to assess the validity of using 25% addition as sea margin over calm water prediction to consider wave encounters.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2156 ◽  
Author(s):  
Byeong Hoon Bae ◽  
Jeong Woo Lee ◽  
Jae Min Cha ◽  
Il-Won Kim ◽  
Hyun-Do Jung ◽  
...  

Powder bed fusion (PBF) additive manufacturing (AM) is currently used to produce high-efficiency, high-density, and high-performance products for a variety of applications. However, existing AM methods are applicable only to metal materials and not to high-melting-point ceramics. Here, we develop a composite material for PBF AM by adding Al2O3 to a glass material using laser melting. Al2O3 and a black pigment are added to a synthesized glass frit for improving the composite strength and increased laser-light absorption, respectively. Our sample analysis shows that the glass melts to form a composite when the mixture is laser-irradiated. To improve the sintering density, we heat-treat the sample at 750 °C to synthesize a high-density glass frit composite. As per our X-ray diffraction (XRD) analysis to confirm the reactivity of the glass frit and Al2O3, we find that no reactions occur between glass and crystalline Al2O3. Moreover, we obtain a high sample density of ≥95% of the theoretical density. We also evaluate the composite’s mechanical properties as a function of the Al2O3 content. Our approach facilitates the manufacturing of ceramic 3D structures using glass materials through PBF AM and affords the benefits of reduced process cost, improved performance, newer functionalities, and increased value addition.


2019 ◽  
Vol 5 (1) ◽  
pp. eaav0363 ◽  
Author(s):  
Ming Zhao ◽  
Zhiguo Xia ◽  
Xiaoxiao Huang ◽  
Lixin Ning ◽  
Romain Gautier ◽  
...  

Solid-state phosphor-converted white light-emitting diodes (pc-WLEDs) are currently revolutionizing the lighting industry. To advance the technology, phosphors with high efficiency, tunable photoluminescence, and high thermal stability are required. Here, we demonstrate that a simple lithium incorporation in NaAlSiO4:Eu system enables the simultaneous fulfillment of the three criteria. The Li substitution at Al sites beside Na sites in NaAlSiO4:Eu leads to an enhanced emission intensity/efficiency owing to an effective Eu3+to Eu2+reduction, an emission color tuning from yellow to green by tuning the occupation of different Eu sites, and an improvement of luminescence thermal stability as a result of the interplay with Li-related defects. A pc-WLED using the Li-codoped NaAlSiO4:Eu as a green component exhibits improved performance. The phosphors with multiple activator sites can facilitate the positive synergistic effect on luminescence properties.


Sign in / Sign up

Export Citation Format

Share Document