Energy Absorption of All-Metallic Corrugated Sandwich Cylindrical Shells Subjected to Axial Compression

2020 ◽  
Vol 87 (12) ◽  
Author(s):  
Pengbo Su ◽  
Bin Han ◽  
Mao Yang ◽  
Zhongnan Zhao ◽  
Feihao Li ◽  
...  

Abstract The energy adsorption properties of all-metallic corrugated sandwich cylindrical shells (CSCSs) subjected to axial compression loading were investigated by the method combining experiments, finite element (FE) simulations, and theoretical analysis. CSCS specimens manufactured using two different methods, i.e., high-speed wire-cut electric discharge machining (HSWEDM) and extrusion, were tested under axial compression. While specimens fabricated separately by HSWEDM and extrusion both exhibited a stable crushing behavior, the extruded ones were much more applicable as lightweight energy absorbers because of their good energy absorption capacity, repeatability, and low cost. The numerically simulated force–displacement curve and the corresponding deformation morphologies of the CSCS compared well with those obtained from experiments. The specific folding deformation mode was revealed from both experiments and simulations. Subsequently, based upon the mode of folding deformation, a theoretical model was established to predict the mean crushing force of the CSCS construction. It was demonstrated that CSCSs with more corrugated units, smaller value of tc/tf and W/Ro could dissipate more impact energy. Such sandwich cylindrical shells exhibited better energy absorption than monolithic cylindrical shells, with an increase of at least 30%. Ultimately, the dynamic effect under the impact load was further evaluated. The dynamic amplification coefficient of CSCS decreased with the increase of the wall thickness.

2014 ◽  
Vol 566 ◽  
pp. 586-592
Author(s):  
Steeve Chung Kim Yuen ◽  
Gerald Nurick ◽  
Sylvester Piu ◽  
Gadija Ebrahim

This paper presents the results of an investigation into the response of thin-walled square (60x60 mm and 76x76 mm) tubes made from mild steel filled with four different fillers; aluminium foam (Cymat 7%), two types of aluminium honeycomb and polyurethane foam to quasi-static and dynamic axial impact load. The energy absorption characteristics of the foam-filled tubes are compared to that of a hollow tube, through efficiency calculations. The tubular structures are subjected to axial impact load generated by drop masses of 320 kg and 390 kg released from a height ranging between 2.1 m to 4.1 m. Footage from a high speed camera is used to determine the average crush forces exerted by each specimen. The results show that the fillers have insignificant effects on the initial peak forces based on the quasi-static results but increase the overall mean crushed force. The findings also indicate that the fillers affect at times the size of the lobe formed thus compromising the energy absorption capacity of the tube.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Srinivasan Karunanithi

The study was focused on slag based geopolymer concrete with the addition of steel fibre. The slag based geopolymer concrete was under shear load and sudden impact load to determine its response. The punching shear represents the load dissipation of the material and the energy absorption capacity of the geopolymer concrete to impact load. The various percentage of steel fibre in the slag based geopolymer concrete was 0.5%, 1.0%, and 1.5%. Overall the dosage 0.5% of steel fibre reinforced slag based geopolymer shows better results with a punching shear of 224 kN and 1.0% of steel fibre incorporated geopolymer concrete had the better energy absorption capacity with 3774.40 N·m for first crack toughness and 4123.88 N·m for ultimate failure toughness.


2021 ◽  
Vol 11 (23) ◽  
pp. 11223
Author(s):  
Bin Hu ◽  
Jian Cai ◽  
Jiabin Ye

By using the ABAQUS finite element (FE) model, which has been verified by experiments, the deformation and internal force changes of RC columns during the impact process are investigated, and a parametric analysis is conducted under different impact kinetic energies Ek. According to the development path of the bottom bending moment-column top displacement curve under impact, the member is in a slight damage state when the curve rebounds before reaching the peak and in a moderate or severe damage state when the curve exceeds the peak, in which case the specific damage state of the member needs to be determined by examining whether there is a secondary descending stage in the curve. Accordingly, a qualitative method for evaluating the bending failure of RC column members under impact is obtained. In addition, the damage state of RC columns under impact can also be quantitatively evaluated by the ratio of the equivalent static load Feq and the ultimate static load-bearing capacity Fsu.


Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Wen Ma ◽  
Ping Xu ◽  
Quanwei Che

Coupler rubber buffers are widely used in high-speed trains, to dissipate the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are pre-compressed and then installed into the frame body. This paper specifically focuses on the energy absorption characteristics of the rubber buffers. Firstly, quasi-static compression tests were carried out for one and three pairs of rubber sheets, and the relationship between the energy absorption responses, i.e. Eabn  =  n ×  Eab1, Edissn =  n ×  Ediss1, and Ean =  Ea1, was obtained. Next, a series of quasi-static tests were performed for one pair of rubber sheet to investigate the energy absorption performance with different compression ratios of the rubber buffers. Then, impact tests with five impact velocities were conducted, and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The results of the impact tests showed that with the increase of the impact velocity, the Eab, Ediss, and Ea of the rear buffer increased significantly, but the three responses of the front buffer did not increase much. Finally, the results of the impact tests and quasi-static tests were contrastively analyzed, which showed that with the increase of the stroke, the values of Eab, Ediss, and Ea increased. However, the increasing rates of the impact tests were higher than that of the quasi-static tests. The maximum value of Ea was 68.76% in the impact tests, which was relatively a high value for the vehicle coupler buffer. The energy capacity of the rear buffer for dynamic loading was determined as 22.98 kJ.


2018 ◽  
Vol 225 ◽  
pp. 06011 ◽  
Author(s):  
Ismail Ali Bin Abdul Aziz ◽  
Daing Mohamad Nafiz Bin Daing Idris ◽  
Mohd Hasnun Arif Bin Hassan ◽  
Mohamad Firdaus Bin Basrawi

In high-speed gear drive and power transmission, system impact failure mode always occurs due to the sudden impact and shock loading during the system in running. Therefore, study on the amount of impact energy that can be absorbed by a gear is vital. Impact test equipment has been designed and modelled for the purpose to study the impact energy on gear tooth. This paper mainly focused on Finite Element Analysis (FEA) of impact energy that occurred during simulation involving the impact test equipment modelling. The simulation was conducted using Abaqus software on critical parts of the test equipment to simulate the impact event and generate impact data for analysis. The load cell in the model was assumed to be free fall at a certain height which gives impact load to the test gear. Three different type of material for the test gear were set up in this simulation. Results from the simulation show that each material possesses different impact energy characteristic. Impact energy values increased along with the height of load drop. AISI 1040 were found to be the toughest material at 3.0m drop that could withstand up to 44.87N.m of impact energy. These data will be used to validate data in physical experiments in further study.


2020 ◽  
pp. 0021955X2096521
Author(s):  
Somen K Bhudolia ◽  
Goram Gohel ◽  
Kah Fai Leong

Expanded Polystyrene (EPS) is a common material used to manufacture the inner foam liner of a bicycle helmet due to its outstanding energy absorption characteristics and light-weight property. The current research presents a novel corrugated expanded polystyrene (EPS) foam design concept which is used to enhance the impact dissipation of bicycle helmets from the safety standpoint to reduce head injuries and make them lighter. The baseline comparison study under impact for different foam configurations is compared with a conventional EPS foam sample without corrugation. Corrugated foam designs under current investigation are 12.5–20% lighter and provide up to 10% higher energy absorption. The details of the novel manufacturing concept, CPSC 1203 helmet impact tests, high-speed camera study to understand the differences in the failure mechanisms are deliberated in this paper.


2015 ◽  
Vol 1105 ◽  
pp. 62-66 ◽  
Author(s):  
Saud Aldajah ◽  
Yousef Haik ◽  
Kamal Moustafa ◽  
Ammar Alomari

Nanocomposites attracted the attention of scientists due to their superior mechanical, thermal, chemical and electrical properties. This research studied the impact of adding carbon nanotubes (CNTs) to the woven Kevlar laminated composites on the high and low speed impact characteristics. Different percentages of CNTs were added to the woven Kevlar-Vinylester composite materials. An in-house developed drop weight testing apparatus was utilized for the low speed impact testing. Two different concentrations of the CNTs were added to a 15-layer woven Kevlar laminates, 0.32 wt% and 0.8 wt%. The results showed that: The 0.32 wt % CNT sample enhanced the interlaminar strength of the composite without enhancing the energy absorption capacity whereas, the 0.8 wt % CNT sample did not improve the impact resistance of the Kevlar composite.For the high speed impact tests, a bulletproof vest was prepared using woven Kevlar, resin, and CNTs at 1.5 w% percentage. The ballistic shooting was carried out by a professional shooter using a 30 caliber and 9 mm bullets for the tests. The CNT bulletproof sample bounced back the 30 caliber copper alloy bullet with no penetration.


Sign in / Sign up

Export Citation Format

Share Document