scholarly journals Characterization and Scaling of Forced Convective Swirl in Sinusoidal Wavy-Plate-Fin Cores of Compact Heat Exchangers

2020 ◽  
Author(s):  
Dantong Shi ◽  
Kuan-Ting Lin ◽  
Milind A. Jog ◽  
Raj M. Manglik

Abstract The characterization and scaling of the thermal-hydraulic performances in wavy plate-fin compact heat exchanger cores, based on the understanding of physical phenomena and heat transfer enhancement mechanism is delineated. Experimental data are presented for forced convection in air (Pr = 0.71) with flow rates in the range 50 ≤ Re ≤ 4000. A variety of wavy-fin cores that span viable applications, with geometrical attributes described by the cross-section aspect ratio alpha (= S/H), fin corrugation aspect ratio gamma (= 2A/lambda), and fin spacing ratio zeta (= S/lambda), are considered. To characterize and correlate the vortex-flow mixing in inter-fin spaces, a Swirl number is introduced from the balance of viscous, inertial and centrifugal forces. It is shown from experimental results that the laminar, transitional and turbulent flow regimes can be identified explicitly by this Swirl number. The effects of Swirl number and dimensionless geometric parameters on swirl flow behavior are further investigated with numerical simulations. New correlations for Fanning friction factor f and Colburn factor j are developed with Swirl number Sw, as scaling parameters. The correlations are devised by a superposition of both enhancement components due to the surface area enlargement and flow pattern modulation. The resulting correlations covering laminar, transitional and turbulent regimes are obtained by the method of asymptotic matching. The generalized correlations can well predict the experimental data to within ±20% and ±15% of error bands for f and j factors, respectively.

Author(s):  
N. P. Yadav ◽  
Abhijit Kushari

This paper reports an experimental investigation of a non-reacting flow in a low aspect ratio dump combustor with taper exit. The separated flow reattachment length for this combustor was higher than the length of the combustor. In order to understand the flow behavior inside the combustor, the velocity measurement inside the combustor was carried out by calibrated one-dimensional hot wire probes for the same flow conditions. The turbulent intensity variation inside the combustor without swirl flow was found to be axi-symmetric. The turbulence intensity along the centre line is lower than at other radial locations because of the presence of the potential core. The intensity in the core region increases as one moves along the centerline in the axial direction, which can be attributed to the weakening of the potential core and the increase in the extent of the shear layer. The turbulence behavior significantly changed with the use of a swirler at the inlet of the combustor. The intensity variation inside the combustor is more uniform than the low swirl number SN = 0.23. The higher turbulence kinetic energy and turbulent dissipation rate was observed at this swirl number. Therefore, the effect of swirl is expected to improve the combustion through better mixing and flame stabilization.


2022 ◽  
Author(s):  
Dantong Shi ◽  
Kuan-Ting Lin ◽  
Milind A. Jog ◽  
Raj M. Manglik

Abstract The influence of swirl flow on enhanced forced convection in wavy-plate-fin cores has been investigated. Three-dimensional computational simulations were carried out for steady-state, periodically developed flow of air (Pr ~ 0.71) with channel walls subject to constant-uniform temperature and flow rates in the range 50 = Re = 4000. The recirculation that develops in the wall troughs and grows to an axial helix is scaled by the Swirl number Sw. As Sw increases, tornado-shaped vortices appear in the wave trough region mid-channel height, then extend longitudinally to encompass majority of the flow channel. As shown by the local wall-shear and heat transfer coefficient variations, the boundary-layer thinning upstream of the wave peak assists to intensify the momentum and heat transfer. However, the flow recirculation in wave trough impedes the local heat transfer at low Sw due to flow stagnation but promotes it at high Sw because of swirl-augmented fluid mixing. Swirling flows also create pressure drag that contributes substantively to the overall pressure loss. Its proportion grows as Sw, corrugation severity, and fin spacing increases to as much as 80% of the total pressure drop. The fin-wall curvature-induced secondary circulation nevertheless produces significantly enhanced convection, and more so in flows with higher Sw. It is quantified by Ff (or j), which is seen to increase log-linearly as fin corrugation aspect ratio and/or fin spacing ratio increases; the influence of cross-section aspect ratio is found to be marginal.


2010 ◽  
Vol 648 ◽  
pp. 471-484 ◽  
Author(s):  
M. DURAN-MATUTE ◽  
L. P. J. KAMP ◽  
R. R. TRIELING ◽  
G. J. F. van HEIJST

There is a lack of rigour in the usual explanation for the scaling of the vertical velocity of shallow flows based on geometrical arguments and the continuity equation. In this paper we show, by studying shallow axisymmetric swirl flows, that the dynamics of the flow are crucial to determine the proper scaling. In addition, we present two characteristic scaling parameters for such flows: Reδ2 for the radial velocity and Reδ3 for the vertical velocity, where Re is the Reynolds number of the swirl flow and δ=H/L is the flow aspect ratio with H the fluid depth and L a typical horizontal length scale. This scaling contradicts the common assumption that the vertical velocity should scale with the primary motion proportional to the aspect ratio δ. Moreover, if this scaling applies, then the primary flow can be considered as quasi-two-dimensional. Numerical simulations of a decaying Lamb–Oseen vortex served to test the analytical results and to determine their range of validity. It was found that the primary flow can be considered as quasi-two-dimensional only if δRe1/2≲3 and δRe1/3≲1.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-30 ◽  
Author(s):  
E. F. Caetano ◽  
O. Shoham ◽  
J. P. Brill

Mechanistic models have been developed for each of the existing two-phase flow patterns in an annulus, namely bubble flow, dispersed bubble flow, slug flow, and annular flow. These models are based on two-phase flow physical phenomena and incorporate annulus characteristics such as casing and tubing diameters and degree of eccentricity. The models also apply the new predictive means for friction factor and Taylor bubble rise velocity presented in Part I. Given a set of flow conditions, the existing flow pattern in the system can be predicted. The developed models are applied next for predicting the flow behavior, including the average volumetric liquid holdup and the average total pressure gradient for the existing flow pattern. In general, good agreement was observed between the experimental data and model predictions.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 35 ◽  
Author(s):  
Anshul Sharma ◽  
Irvine Lian Hao Ong ◽  
Anupam Sengupta

Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studied for their fundamental and applied prospects in material science and medical diagnostics. LCLC phases represent different self-assembled states of disc-shaped molecules, held together by noncovalent interactions that lead to highly sensitive concentration and temperature dependent properties. Yet, microscale insights into confined LCLCs, specifically in the context of confinement geometry and surface properties, are lacking. Here, we report the emergence of time dependent textures in static disodium cromoglycate (DSCG) solutions, confined in PDMS-based microfluidic devices. We use a combination of soft lithography, surface characterization, and polarized optical imaging to generate and analyze the confinement-induced LCLC textures and demonstrate that over time, herringbone and spherulite textures emerge due to spontaneous nematic (N) to columnar M-phase transition, propagating from the LCLC-PDMS interface into the LCLC bulk. By varying the confinement geometry, anchoring conditions, and the initial DSCG concentration, we can systematically tune the temporal dynamics of the N- to M-phase transition and textural behavior of the confined LCLC. Overall, the time taken to change from nematic to the characteristic M-phase textures decreased as the confinement aspect ratio (width/depth) increased. For a given aspect ratio, the transition to the M-phase was generally faster in degenerate planar confinements, relative to the transition in homeotropic confinements. Since the static molecular states register the initial conditions for LC flows, the time dependent textures reported here suggest that the surface and confinement effects—even under static conditions—could be central in understanding the flow behavior of LCLCs and the associated transport properties of this versatile material.


Author(s):  
Klaus Medeiros ◽  
Kyle Chavez ◽  
Fernando S. Fonseca ◽  
Guilherme Parsekian ◽  
Nigel G. Shrive

Finite element models were developed to assess the influence of several parameters on the load capacity, deflection, and initial stiffness of multi-story, partially grouted masonry walls with openings. The base model was validated with experimental data from three walls. The analyses indicated that the load capacity of masonry walls was considerably sensitive to the ungrouted and grouted masonry strengths and mortar shear strength; moderately sensitive to the vertical reinforcement ratio and aspect ratio; slightly sensitive to the axial stress; and almost insensitive to the opening size, reinforcement spacing, and horizontal reinforcement ratio. The deflection of the walls had well-defined correlations with the masonry strength, vertical reinforcement, axial stress and aspect ratio. The initial stiffness was especially sensitive to the axial stress and the aspect ratio, but weakly correlated with the opening size, and the spacing and size of the reinforcement.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


1997 ◽  
Vol 119 (1) ◽  
pp. 20-25 ◽  
Author(s):  
H. Yuan ◽  
C. Sarica ◽  
S. Miska ◽  
J. P. Brill

A new test facility was designed and constructed to simulate flow in a horizontal well with a single perforation. A total of 635 tests were conducted with Reynolds numbers ranging from 5000 to 60,000 with influx to main rate ratios ranging from 1/5 to 1/100, and also for the no-influx case. The flow behavior in a single-perforation new friction expression for a single-perforation horizontal well was developed. A new simple correlation for the horizontal well friction factor was developed by applying experimental data to the general friction factor expression. The new friction factor correlation and experimental data were compared with the Asheim et al. (1992) data and model, and showed that the new correlation performed better than the Asheim et al. (1992) model.


2018 ◽  
Vol 90 (7) ◽  
pp. 1136-1144 ◽  
Author(s):  
Dimitris Gkiolas ◽  
Demetri Yiasemides ◽  
Demetri Mathioulakis

Purpose The complex flow behavior over an oscillating aerodynamic body, e.g. a helicopter rotor blade, a rotating wind turbine blade or the wing of a maneuvering airplane involves combinations of pitching and plunging motions. As the parameters of the problem (Re, St and phase difference between these two motions) vary, a quasi-steady analysis fails to provide realistic results for the aerodynamic response of the moving body, whereas this study aims to provide reliable experimental data. Design/methodology/approach In the present study, a pitching and plunging mechanism was designed and built in a subsonic closed-circuit wind tunnel as well as a rectangular aluminum wing of a 2:1 aspect-ratio with a NACA64-418 airfoil, used in wind turbine blades. To measure the pressure distribution along the wing chord, a number of fast responding transducers were embedded into the mid span wing surface. Simultaneous pressure measurements were conducted along the wing chord for the Reynolds number of 0.85 × 106 for both steady and unsteady cases (pitching and plunging). A flow visualization technique was used to detect the flow separation line under steady conditions. Findings Elevated pressure fluctuations coincide with the flow separation line having been detected through surface flow visualization and flattened pressure distributions appear downstream of the flow separation line. Closed hysteresis loops of the lift coefficient versus angle of attack were measured for combined pitching and plunging motions. Practical implications The experimental data can be used for improvement of unsteady fluid mechanics problem solvers. Originality/value In the present study, a new installation was built allowing the aerodynamic study of oscillating wings performing pitching and plunging motions with prescribed frequencies and phase lags between the two motions. The experimental data can be used for improvement of computational fluid dynamics codes in case that the examined aerodynamic body is oscillating.


1968 ◽  
Vol 90 (2) ◽  
pp. 395-404 ◽  
Author(s):  
H. N. Ketola ◽  
J. M. McGrew

A theory of the partially wetted rotating disk is described and experimental data presented which verify the application of this theory in practical applications. Four different flow regimes may be identified according to the value of the disk Reynolds number and the spacing ratio between the disk and stationary wall. The analytical expressions for prediction of the pressure gradient developed and the frictional resistance are uniquely determined by the disk Reynolds number, spacing ratio, and the degree of wetting of the disk.


Sign in / Sign up

Export Citation Format

Share Document