Dimethyl Ether and Liquefied Petroleum Gas Co-Fumigation and Oxidation Catalyst Exhaust Aftertreatment: A Synergy for Improvement of Thermal Efficiency and Emissions in a Dual-Fuel Engine

2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Wittison Kamei ◽  
Niranjan Sahoo ◽  
V. V. D. N. Prasad

Abstract Gaseous hydrocarbon (HC) fuels or alcohols can partially replace diesel in compression ignition engines through the dual-fuel mode of combustion. However, such dual-fuel mode faces the challenges of high carbon monoxide (CO) and unburnt HC emissions and low thermal efficiency, particularly at low loads. The objective of this study is to achieve dual-fuel engine thermal efficiency and emissions better than those of a diesel mode while utilizing alternative fuels. A new approach consisting of a combined strategy using dimethyl ether (DME) as a co-fumigant with liquefied petroleum gas (LPG) and deployment of a customized oxidation catalyst in a single-cylinder diesel engine is presented. DME is a high-cetane oxygenate which can be produced from renewable biomass feedstock. DME and LPG are miscible, and they can be handled and stored similarly. The diesel energy replacements (36–64%) by DME and LPG are studied at low-load to part-load conditions. A customized oxidation catalyst is benchmarked with a commercial one. The dual-fuel combustion exhibits low-temperature and high-temperature reactions with significant improvement in combustion phasing. The dual-fuel mode outperforms the diesel mode and has higher thermal efficiency. The dual-fuel mode with the customized oxidation catalyst achieves emissions of CO, HC, and smoke lower than those of the diesel mode by up to 94%, 89%, and 94%, respectively. The dual-fuel engine effectively utilizes the alternative fuels and achieves drastically reduced emissions and higher thermal efficiency as compared with the diesel mode.

Author(s):  
T. Lakshmanan ◽  
A. Khadeer Ahmed ◽  
G. Nagarajan

Gaseous fuels are good alternative fuels to improve the energy crisis of today’s situation due to its clean burning characteristics. However, the incidence of backfire and knock remains a significant barrier in commercialization. With the invention of latest technology, the above barriers are eliminated. One such technique is timed injection of water into the intake port. In the present investigation, acetylene was aspirated in the intake manifold of a single cylinder diesel engine, with a gas flow rate of 390 g/h, along with water injected in the intake port, to overcome the backfire and knock problems in gaseous dual fuel engine. The brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO2 and exhaust gas temperature were studied. Dual fuel operation of acetylene induction with injection of water results in lowered NOx emissions with complete elimination of backfire and knock at the expense of brake thermal efficiency.


2014 ◽  
Vol 984-985 ◽  
pp. 962-966
Author(s):  
B. Kondaiah ◽  
B. Durga Prasad

:The population explosion in India is causing heavy consumption of energy resources. Most of the transportation sector is based on diesel as fuel. In this regard, it is high time for the search of renewable alternative fuels to reduce the dependency of oil imports. The usage of fossil fuels is also causing environment pollution. To minimize the pollution, an alternative to diesel is found to be non edible Mahua oil. In the present work, experiments were carried out on Mahua oil methyl ester (MOME) fuel and evaluated its performance at different injection pressures ranging from 190 to 220bar with the increment of 10 bar. The effect of blending of MOME with diesel at different injection pressures were studied experimentally to evaluate the brake thermal efficiency, brake specific energy consumption (BSEC), carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions. It was observed from experimental results that 20% MOME (B20) have higher thermal efficiency at 190 bar compared with pure diesel and also HC and CO emissions were reduced.


Author(s):  
Wei Fang ◽  
Bin Huang ◽  
David B. Kittelson ◽  
William F. Northrop

Premixed compression ignition (CI) combustion has attracted increasing research effort recently due to its potential to achieve both high thermal efficiency and low emissions. Dual-fuel strategies for enabling premixed CI have been a focus using a low-reactivity fumigant and direct diesel injection to control ignition. Alternative fuels like hydrogen and ethanol have been used as fumigants in the past but typically with diesel injection systems that did not allow the same degree of control or mixing enabled by modern common rail systems. In this work, we experimentally investigated hydrogen, ethanol, and gasoline as fumigants and examined three levels of fumigant energy fraction (FEF) using gasoline over a large, direct diesel injection timing range with a single-cylinder diesel engine. It was found that the operable diesel injection timing range at constant FEF was dependent on the fumigant's propensity for autoignition. Peak indicated gross cycle efficiency occurred with advanced diesel injection timing and aligned well with combustion phasing near top dead center (TDC), as we found in an earlier work. The use of hydrogen as a fumigant resulted in very low hydrocarbon (HC) emissions compared with ethanol and gasoline, establishing that they mainly result from incomplete combustion of the fumigated fuel. Hydrogen emissions were independent of diesel injection timing, and HC emissions were strongly linked to combustion phasing, giving further indication that squish and crevice flows are responsible for partially burned species from fumigation combustion.


Author(s):  
Xu Da ◽  
Qin Fei ◽  
Li Xiangyang

The combustion characteristics and emission characteristics of the commonly used alternative fuels in the fuel process are reviewed, the three types of alternative fuels are: Alcohols alternative fuel, biological alternative fuel and gas alternative fuel. The three alternative fuels have their own advantages and disadvantages in combustion characteristics and emission characteristics. The dual fuel blended with alcohols has a higher burning rate than pure diesel or gasoline, and emits fewer soot particles. When biofuel is blended into traditional fuel, the thermal efficiency is improved, and the particle diameter of the emitted particles is smaller than that of pure diesel. The use of hydrogen fuel increases the power of the engine, and significantly reduces the content of CO and CO2 in the emissions. With the increase of the proportion of hydrogen, the amount of soot emitted becomes less, but the amount of nitrogen oxide emissions increases. Each of the three types of alternative fuels has its own characteristics and advantages.


2021 ◽  
Vol 13 (3) ◽  
pp. 67-77
Author(s):  
V. Annanth KISHORRE ◽  
A. KAREN ◽  
K. Abhishek VEDA ◽  
H. NIRANJAN ◽  
K. Anusha KRISHNA ◽  
...  

Fossil fuels are depleting faster than being consumed. Fuels with higher efficiency, less consumability, and ecocity are very much desired for the present scenario. In this investigation, a conventional single-cylinder CI engine is utilized in dual-fuel mode, in which biogas is the primary fuel while biodiesel (palm oil) with different DEE blending ratios is used (5%, 10%, and 15%) as a secondary fuel. For each DEE blend, biogas flow rate and loads are varied and their effect on brake thermal efficiency, pilot fuel energy ratio, CO, NOx, and HC emissions are estimated. Exhaust gas emissions were calculated using an AVL 5-gas emission analyser. The calorific value and density of each sample are calculated. It is witnessed from the experiments that 5% DEE used with lower biogas flow rate resulted in high brake thermal efficiency of 31.83%. Also, an increase in DEE is found to increase NOx emission while an increase in biogas flow rate resulted in a reduction in NOx emission. The addition of biogas is experimentally observed to have the potential in reducing pilot fuel consumption.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5773 ◽  
Author(s):  
Łukasz Warguła ◽  
Mateusz Kukla ◽  
Piotr Lijewski ◽  
Michał Dobrzyński ◽  
Filip Markiewicz

The use of alternative fuels is a contemporary trend in science aimed at the protection of non-renewable resources, reducing the negative impact on people and reducing the negative impact on the natural environment. Liquefied petroleum gas (LPG) is an alternative fuel within the meaning of the European Union Directive (2014/94/UE), as it is an alternative for energy sources derived from crude oil. The use of LPG fuel in low-power internal combustion engines is one of the currently developed scientific research directions. It results from the possibility of limiting air pollutant emissions compared to the commonly used gasoline and the lower cost of this fuel in many countries. By “gasoline 95” the Authors mean non-lead petrol as a flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines, whereas 95 is an octane rating (octane number). This article presents the results of research on fuel consumption, toxic exhaust gas emission, and operating costs of a woodchipper used for shredding branches with a diameter of up to 100 mm in real working conditions. The woodchipper, powered by a 9.5 kW internal combustion engine, fueled by gasoline and LPG was tested. Liberal regulations of the European Union (Regulation 2016/1628/EU) on the emission of harmful exhaust compounds from small spark-ignition engines (up to 19 kW) and non-road applications contribute to the low technical advancement level of these engines. The authors researched a relatively simple and cheap LPG fueling system, as in their opinion, such a system has the best chance of being implemented for use. In the study, the branches of cherry plum were shredded (Prunus cerasiferaEhrh. Beitr. Naturk. 4:17. 1789 (Gartenkalender4:189-204. 1784)). Their diameter was ca. 80 mm, length 3 m, and moisture content ca. 25%. The system was tested during the shredding of the branches in real working conditions (the frequency of supplying the branches about 4 min−1 and the mass productivity of about 0.73 t/h). Based on the recorded results, it was found that the LPG fueled engine was characterized by higher carbon monoxide (CO) and nitrogen oxides (NOx) emissions by 22% and 27%, respectively. A positive effect of using LPG was the reduction of fuel consumption by 28% and carbon dioxide (CO2) and hydrocarbons (HC) emissions by 37% and 83%, respectively. The results of the research show that the use of alternative fuels can bring benefits in terms of CO2 and HC emissions, but at the same time be characterized by an increase in CO and NOx emissions. Further research should be conducted on innovative alternative fuel supply systems, such as in the automotive industry. At the same time, legislators should limit the use of low-quality fuel supply systems with the limits of pollutant emissions in exhaust gases, contributing to the development and economic competitiveness of new fuel injection systems.


Author(s):  
Yanuandri Putrasari ◽  
Achmad Praptijanto ◽  
Arifin Nur ◽  
Widodo Budi Santoso ◽  
Mulia Pratama ◽  
...  

Efforts to find alternative fuels and reduce emissions of CI engines have been conducted, one of which is the use of diesel hydrogen dual fuel. One of the goals of using hydrogen in dual-fuel combustion systems is to reduce particulate emissions and increase engine power. This study investigates the thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition. The hydrogen was used as a secondary fuel in a single cylinder 667 cm3 diesel engine. The hydrogen was supplied to intake manifold by fumigation method, and diesel was injected directly into the combustion chamber. The results show that the performance test yielding an increase around 10% in the value of thermal efficiency of diesel engines with the addition of hydrogen either at 2000 or 2500 rpm. Meanwhile, emission analyses show that the addition of hydrogen at 2000 and 2500 rpm lead to the decrease of NOx value up to 43%. Furthermore, the smokeless emissions around 0% per kWh were occurred by hydrogen addition at 2000 and 2500 rpm of engine speeds with load operation under 20 Nm.


2004 ◽  
Vol 127 (4) ◽  
pp. 909-917 ◽  
Author(s):  
David Horstman ◽  
Duane Abata ◽  
Jason Keith ◽  
Leroy Oberto

Dual fuel (CI) engines provide an excellent means of maintaining high thermal efficiency and power while reducing emissions. This is particularly true in situations where the main CI fuel does not exhibit good autoignition characteristics, such as diesel engines operating on natural gas usually in stationary applications such as a pipeline installation. This paper explores the feasibility of chemically synthesizing DME from natural gas “on-board” and using it as an ignition source for a dual fuel engine. Conversion from diesel to dual fuel operation merits substantial benefits in PM emission reduction. Assuming a 5% pilot amount, a “once through” process has been modeled and a first law analysis (using practical isentropic efficiencies) demonstrates that this combined system can be operated with a reduction of between 5%–10% of the equivalent diesel efficiency. Significant quantities (∼30vol%) of hydrogen are introduced to the natural gas as a byproduct of the DME synthesis process. The corresponding increase in combustion efficiency must be validated by experiments to determine DME and H2 requirements for successful pilot ignition of the natural gas/H2 mixture.


Sign in / Sign up

Export Citation Format

Share Document