scholarly journals Analysis of Combustion Characteristics and Emission Characteristics of Alternative Fuels Worldwide

Author(s):  
Xu Da ◽  
Qin Fei ◽  
Li Xiangyang

The combustion characteristics and emission characteristics of the commonly used alternative fuels in the fuel process are reviewed, the three types of alternative fuels are: Alcohols alternative fuel, biological alternative fuel and gas alternative fuel. The three alternative fuels have their own advantages and disadvantages in combustion characteristics and emission characteristics. The dual fuel blended with alcohols has a higher burning rate than pure diesel or gasoline, and emits fewer soot particles. When biofuel is blended into traditional fuel, the thermal efficiency is improved, and the particle diameter of the emitted particles is smaller than that of pure diesel. The use of hydrogen fuel increases the power of the engine, and significantly reduces the content of CO and CO2 in the emissions. With the increase of the proportion of hydrogen, the amount of soot emitted becomes less, but the amount of nitrogen oxide emissions increases. Each of the three types of alternative fuels has its own characteristics and advantages.

Author(s):  
Yanuandri Putrasari ◽  
Achmad Praptijanto ◽  
Arifin Nur ◽  
Widodo Budi Santoso ◽  
Mulia Pratama ◽  
...  

Efforts to find alternative fuels and reduce emissions of CI engines have been conducted, one of which is the use of diesel hydrogen dual fuel. One of the goals of using hydrogen in dual-fuel combustion systems is to reduce particulate emissions and increase engine power. This study investigates the thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition. The hydrogen was used as a secondary fuel in a single cylinder 667 cm3 diesel engine. The hydrogen was supplied to intake manifold by fumigation method, and diesel was injected directly into the combustion chamber. The results show that the performance test yielding an increase around 10% in the value of thermal efficiency of diesel engines with the addition of hydrogen either at 2000 or 2500 rpm. Meanwhile, emission analyses show that the addition of hydrogen at 2000 and 2500 rpm lead to the decrease of NOx value up to 43%. Furthermore, the smokeless emissions around 0% per kWh were occurred by hydrogen addition at 2000 and 2500 rpm of engine speeds with load operation under 20 Nm.


2021 ◽  
pp. 1-39
Author(s):  
Akash Chandrabhan Chandekar ◽  
Sushmita Deka ◽  
Biplab K. Debnath ◽  
Ramesh Babu Pallekonda

Abstract The persistent efforts among the researchers are being done to reduce emissions by the exploration of different alternative fuels. The application of alternative fuel is also found to influence engine vibration. The present study explores the potential connection between the change of the engine operating parameters and the engine vibration pattern. The objective is to analyse the effect of alternative fuel on engine vibration and performance. The experiments are performed on two different engines of single cylinder and twin-cylinder variants at the load range of 0 to 34Nm, with steps of 6.8Nm and at the constant speed of 1500rpm. The single cylinder engine, fuelled with only diesel mode, is tested at two compression ratios of 16.5 and 17.5. While, the twin-cylinder engine with a constant compression ratio of 16.5, is tested at both diesel unifuel and diesel-compressed natural gas dual-fuel modes. Further, in dual-fuel mode, tests are conducted with compressed natural gas substitutions of 40%, 60% and 80% for given loads and speed. The engine vibration signatures are measured in terms of root mean square acceleration, representing the amplitude of vibration. The combustion parameters considered are cylinder pressure, rate of pressure rise, heat release rate and ignition delay. At higher loads, the vibration amplitude increases along with the cylinder pressure. The maximum peak cylinder pressure of 95bar is found in the case of the single cylinder engine at the highest load condition that also produced a peak vibration of 3219m/s2.


Author(s):  
T. Lakshmanan ◽  
A. Khadeer Ahmed ◽  
G. Nagarajan

Gaseous fuels are good alternative fuels to improve the energy crisis of today’s situation due to its clean burning characteristics. However, the incidence of backfire and knock remains a significant barrier in commercialization. With the invention of latest technology, the above barriers are eliminated. One such technique is timed injection of water into the intake port. In the present investigation, acetylene was aspirated in the intake manifold of a single cylinder diesel engine, with a gas flow rate of 390 g/h, along with water injected in the intake port, to overcome the backfire and knock problems in gaseous dual fuel engine. The brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO2 and exhaust gas temperature were studied. Dual fuel operation of acetylene induction with injection of water results in lowered NOx emissions with complete elimination of backfire and knock at the expense of brake thermal efficiency.


Author(s):  
Samiddha Palit ◽  
Bijan Kumar Mandal ◽  
Sudip Ghosh ◽  
Arup Jyoti Bhowal

Fast depletion of the conventional petroleum-based fossil fuel reserves and the detrimental effects of the pollutant emissions associated with the combustion of these fuels in internal combustion (IC) engines propelled the exploration and development of alternative fuels for internal combustion engines. Biodiesel has been identified as one of the most promising alternative fuels for IC engines. This paper discusses about the advantages and disadvantages of biodiesel vis-a-vis the conventional petro-diesel and presents the energetic performances and emission characteristics of CI engine using biodiesel and biodiesel-petrodiesel blends as fuels. An overview of the current research works carried out by several researchers has been presented in brief. A review of the performance analysis suggests that biodiesel and its blends with conventional diesel have comparable brake thermal efficiencies. The energy balance studies show that biodiesel returns more than 3 units of energy for each unit used in its production. However, the brake specific fuel consumption increases by about 9–14% compared to diesel fuel. But, considerable improvement in environmental performance is obtained using biodiesel. There is significant reduction in the emissions of unburned hydrocarbons, polyaromatic hydrocarbons (PAHs), soot, particulates, carbon monoxide, carbon dioxide and sulphur dioxide with biodiesel. But the NOx emission is more with biodiesel compared to diesel. A case study with Jatropha biodiesel as fuel and the current development status, both global and Indian, of biodiesel as a CI engine fuel have been included in the paper.


Author(s):  
Mehrnoosh Dashti ◽  
Ali Asghar Hamidi ◽  
Ali Asghar Mozafari

With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1–5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost effective tool for design and analysis of the engine operations. In the present work the use of an exiting spark ignition engine to run on both gasoline and CNG is evaluated by thermodynamic simulation of the engine cycle. The stepwise calculations for pressure and temperature of the cylinder at compression process, ignition delay time, combustion and expansion processes have been considered. The first law of thermodynamics is applied for all steps and Newton-Raphson method is used for the numerical solution. Temperature dependent specific heat capacity and as a result specific enthalpy, entropy, internal energy and specific Gibbs functions are calculated in each step. Two zones model for the combustion process simulation has been used and the mass burning rate is predicted by considering the propagation of the flame front spherically. The performance characteristics including power, IMEP, ISFC, thermal efficiency and emissions concentration of SI engine on both gasoline and CNG fuel are determined by the model. In order to validate the model, the results are compared with the corresponding experimental data. It is found that the simulated results show reasonable agreement with the experimental data.


In present days industries are growing at a rapid rate and so as the usage of the diesel. The fossil fuels are limited in nature, the increased usage of diesel is resulting in the depletion of its reserves this gives rise to the need of alternative fuels. Due to low specific fuel consumption and supreme power efficiency it has vast applications compared to other fuels but NOX and smoke has seriously causing problem to environment. For this the Palmyra oil has same properties of diesel with varying compression ratios effects the performance and emission characteristics are evaluated. In this process step wise increase of CRs from 16 initially .Then increases EGRs of 0%,5% and 10% and studied performance and emission characteristics. There is improvement in engine efficiency during EGR increment and at low load .There is simultanesly decrease in NOX emissions . The single cylinder four stroke variable compression performance and emissions can be varied.. when fuel is pure diesel,b15and b35 of Palmyra oil is examined and bear with standard automobile usable diesel was conducted at compression ratio of 16:1 at the degrees of 19 and 23 degrees. The influence of Palmyra oil like compression ratio on fuel consumption ,brake thermal efficiency and exhaust gas emissions like NOx and hc has been investigated .the overall optimum is found to be b15 biodiesel –diesel blended for compression ratio of 16 at different exhaust gas recirculation such as 0, 5 and 10. The same experimentation is done for other blends B15 and B35 with palmyra oil. All the values are compared with each other. The configuration which achieved highest Break thermal efficiency is compared to the common diesel engine configuration used and the advantages and the disadvantages are listed out


Author(s):  
Sakshi Mishra ◽  

Alternative fuels also called as advanced fuels or non-conventional fuels, are any constituents or materials which could be used as fuels, apart from conventional fuels. The need of the hour is to ploy on to unconventional energy resources since conventional sources of energy are fast depleting. Also, we need to look out for the fuels which are environment friendly as well. Alternative fuels are immediately needed to deal with the dual issues of fast depletion of fossil fuel reserves as well as environmental pollution. Some of these fuels can be used directly while others need to be transformed to bring the relative properties close to conventional fuels. The economics of the fuels like vegetable oils, ethanol and methanol etc. compared to the traditional petroleum resources are marginal. In this paper, we are discussing the preparation of blends of octanol with diesel in the proportion of 5,10,15,20 and 25% to identify its potential to be used as an alternative fuel. Then after comparing the properties of blends with diesel and estimate its combustion characteristics at different compression ratio and compare with the diesel. To end with, the effect of variable compression ratio on combustion characteristics of blend would be analysed. As an outcome of the exhaustive engine trials, it may be recommended that 20% (v/v) of diesel can be replaced with IPA for direct application in unmodified diesel engines with a marginal increase in emissions of CO and HC and substantial improvements in the emissions of CO2 and NOx.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
V. S. Yaliwal ◽  
N. R. Banapurmath

AbstractThe present experimental study aims to examine the combustion and emission characteristics of a single cylinder four stroke direct injection diesel engine operated in dual fuel mode using dairy scum oil methyl ester (DiSOME) and its blend (B20)—producer gas combination with and without addition of hydrogen. DiSOME/B20-producer gas combination without hydrogen addition exhibited inferior performance with increased hydrocarbon and carbon monoxide emissions owing to poor physic-chemical properties of both biodiesel and inducted low calorific value gas (producer gas) compared to the same fuel combination with hydrogen. Producer gas was inducted along with air, and hydrogen was allowed to mix with air-producer gas combination in the intake manifold. Experimental investigations were conducted at all load conditions and at constant flow rate of hydrogen (8 lpm). It was noticed that that B20-hydrogen enriched producer gas combination with optimum parameters resulted in amplified thermal efficiency with reduced emission levels compared to the operation with B20/DiSOME-producer gas combination. However, investigation showed that diesel-producer gas combination with hydrogen addition provided amplified brake thermal efficiency by 3.8%, 16.4% and 13.2% compared to the diesel/DiSOME/B20—producer gas combinations, respectively, at 80% load. Hydrogen addition provided enhanced cylinder pressure and heat release rate with reduced emission levels except nitric oxide emissions. It can be concluded that the deprived combustion associated with DiSOME/B20-producer gas combination can be improved with hydrogen addition. The combination of DiSOME-producer gas operation with hydrogen addition is uniqueness of this present work.


2021 ◽  
Vol 9 (10) ◽  
pp. 1072
Author(s):  
Van Chien Pham ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Won-Ju Lee ◽  
Jae-Hyuk Choi

A numerical study was carried out to investigate the effects of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), and dimethyl ether (DME) on the combustion and emission characteristics of a four-stroke gas-diesel dual-fuel (DF) marine engine at full load. Three-dimensional simulations of the combustion process and emission formation inside the engine cylinder in the diesel and DF modes were performed using the AVL FIRE R2018a simulation software to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results agreed well with the measured values reported in the engine shop test technical data. The simulation results showed reductions in the in-cylinder peak pressure and temperatures, as well as the emission formations, in the DF modes in comparison to the diesel mode. The DF mode could significantly reduce nitric oxide (NO) emissions (up to 96.225%) of DME compared to the diesel mode. Meanwhile, C3H8 and CH4 fuels effectively reduced the soot (up to 82.78%) and carbon dioxide (CO2) emissions (by 21.33%), respectively, compared to the diesel mode. However, the results also showed longer ignition delay times of the combustion processes when the engine operated in the DF mode, particularly in the DME-diesel mode. The combustion and emission characteristics of the engine were also analyzed when varying the injection timing; the results showed that applying the injection timing adjustment method could further address NO emission problems but led to a decrease in the engine power. Therefore, it is necessary to consider the benefits and disadvantages of adopting the injection timing adjustment strategy to address certain engine emission problems. This study successfully analyzed the benefits of using various gas fuels as alternative fuels and the injection timing adjustment method in DF marine engines to meet the International Maritime Organization (IMO) emission regulations without the use of any emission after-treatment devices.


Sign in / Sign up

Export Citation Format

Share Document