Model Based Unified Framework for Detection and Mitigation of Cyclic Torque Imbalance in a Gasoline Engine

Author(s):  
Raheel Anjum ◽  
Ahmed Yar ◽  
Ghulam Murtaza ◽  
Qadeer Ahmed ◽  
Aamer Bhatti

Abstract The torque produced by the internal combustion engine is desired to be of similar value for consecutive combustion cycles; nevertheless, the difference occurs in the cyclic torque due to disturbances in its generation. The variation between output work of successive combustion cycles is considered as the main cause of imbalance in the cyclic torque. Such variations are displayed in engine output torque and affect its fuel efficiency as well as exhaust emissions. In this paper, a model based unified framework is proposed for the detection and mitigation of cyclic toque imbalance in gasoline engines. First Principle Based Engine Model (FPEM) is employed to develop the proposed novel framework. Fault in fuel injection subsystem is induced to generate an imbalance in the cyclic torque. Uniform Second Order Sliding Mode (USOSM) observer is applied for the estimation of the unknown input i.e. net piston force from engine speed dynamics to detect the imbalance in cyclic torque. Estimated net piston force is employed to design the control law for Certainty Equivalence Super Twisting Algorithm (CESTA) based Fault Tolerant Control (FTC) technique to mitigate the torque imbalance. First Principle Based Engine Model is transformed to get a direct relation between engine speed and fuel input. Results of numerical simulation demonstrated that the desired objective is achieved by the proposed unified framework.

Author(s):  
Ahmed Yar ◽  
A. I. Bhatti ◽  
Qadeer Ahmed

A first principle based-control oriented gasoline engine model is proposed that is based on the mathematical model of the actual piston and crankshaft mechanism. Unlike conventional mean value engine models (MVEMs), which involve approximating the torque production mechanism with a volumetric pump, the proposed model obviates this rather over-simplistic assumption. The alleviation of this assumption leads to the additional features in the model such as crankshaft speed fluctuations and tension in bodies forming the mechanism. The torque production dynamics are derived through Lagrangian mechanics. The derived equations are reduced to a suitable form that can be easily used in the control-oriented model. As a result, the abstraction level is greatly reduced between the engine system and the mathematical model. The proposed model is validated successfully against a commercially available 1.3 L gasoline engine. Being a transparent and more capable model, the proposed model can offer better insight into the engine dynamics, improved control design and diagnosis solutions, and that too, in a unified framework.


Author(s):  
Stephen Pace ◽  
Guoming G. Zhu

A multi-input-multi-output (MIMO) sliding mode control scheme was developed with guaranteed stability to simultaneously control air-to-fuel ratio (AFR) and fuel ratios to desired levels under various air flow disturbances by regulating the mass flow rates of engine port-fuel-injection (PFI) and direct injection (DI) systems. The sliding mode control performance was compared with a baseline multiloop proportional integral differential (PID) controller through simulations and showed improvements. A four cylinder mean value engine model and the proposed sliding mode controller were implemented into a hardware-in-the-loop (HIL) simulator and a target engine control module, and HIL simulations were conducted to validate the developed controller for potential implementation in an automotive engine.


Author(s):  
Ghulam Murtaza ◽  
Aamir I Bhatti ◽  
Yasir A Butt

This paper proposes a combination of higher order sliding mode and adaptive control for unified fault detection and isolation and fault tolerant control (FTC) of the air path of a diesel engine. Current diesel engines are equipped with features such as variable geometry turbochargers (VGT) and exhaust gas recirculation (EGR) for exhaust emission control. Since EGR and VGT systems are present in the exhaust channel, they are strongly coupled and are prone to both structured as well as unstructured faults. The proposed controller detects and estimates the structured faults by means of adaptation laws, designed by making use of the certainty equivalence principle. Fault effects are compensated by repositioning the actuators. This allows relaxation of the boundedness condition of the super twisting algorithm, as sliding mode controller gains are required to dominate the unstructured parts only, which consequently reduces chattering. A nonlinear multi-input multi-output reduced state control-oriented model has been employed for working out the FTC strategy for EGR and VGT actuators. The stability of the overall system has been analysed using the Lyapunov stability criterion. Faults and proposed controllers are simulated using a fully validated industrial scale diesel engine model to establish the effectiveness of the algorithm.


Author(s):  
Ahmed Yar ◽  
A. I. Bhatti ◽  
Qadeer Ahmed

A novel first principle based control oriented model of a gasoline engine is proposed which also carries diagnostic capabilities. Unlike existing control oriented models, the formulated model reflects dynamics of the faultless as well as faulty engine with high fidelity. In the proposed model, the torque production subsystem is obtained by integration of further two subsystems that is model of a single cylinder torque producing mechanism and an analytical gasoline engine cylinder pressure model. Model of a single cylinder torque producing mechanism is derived using constrained equation of motion (EOM) in Lagrangian mechanics. While cylinder pressure is evaluated using a closed form parametric analytical gasoline engine cylinder pressure model. Novel attributes of the proposed model include minimal usage of empirical relations and relatively wider region of model validity. Additionally, the model provides model based description of crankshaft angular speed fluctuations and tension in the rigid bodies. Capacity of the model to describe the system dynamics under fault conditions is elaborated with case study of an intermittent misfire condition. Model attains new capabilities based on the said novel attributes. The model is successfully validated against experimental data.


Author(s):  
Jonathan W. Anders ◽  
Matthew A. Franchek

An instrumental variable approach to nonlinear model-based adaptive control of engine speed is investigated and implemented on a spark ignition internal combustion engine. A four-step version of the instrumental variable parameter estimation algorithm is used to identify a bias-free and noise tolerant model of the engine dynamics between the by-pass air valve voltage and engine speed. The parametric model representing the engine dynamics is a truncated Volterra series with a time delay. Model-based adaptive control is accomplished through a partitioned inversion of the engine model which is minimum phase and OL stable. The desired closed loop throttle response and disturbance rejection dynamics are introduced via a two-degree-of-freedom feedback control structure. Performance of the nonlinear model-based adaptive control algorithm is verified experimentally.


2020 ◽  
pp. 146808742096085
Author(s):  
J Valero-Marco ◽  
B Lehrheuer ◽  
JJ López ◽  
S Pischinger

The approach of this research is to enlarge the knowledge about the methodologies to increase the maximum achievable load degree in the context of gasoline CAI engines. This work is the continuation of a previous work related to the study of the water injection effect on combustion, where this strategy was approached. The operating strategies to introduce the water and the interconnected settings were deeply analyzed in order to optimize combustion and to evaluate its potential to increase the maximum load degree when operating in CAI. During these initial tests, the engine was configured to enhance the mixture autoignition. The compression ratio was high compared to a standard gasoline engine, and suitable fuel injection strategies were selected based on previous studies from the authors to maximize the reactivity of the mixture, and get a stable CAI operation. Once water injection proved to provide encouraging results, the next step dealt in this work, was to go deeper and explore its effects when the engine configuration is more similar to a conventional gasoline engine, trying to get CAI combustion closer to production engines. This means, mainly, lower compression ratios and different fuel injection strategies, which hinders CAI operation. Finally, since all the previous works were performed at constant engine speed, the engine speed was also modified in order to see the applicability of the defined strategies to operate under CAI conditions at other operating conditions. The results obtained show that all these modifications are compatible with CAI operation: the required compression ratio can be reduced, in some cases the injection strategies can be simplified, and the increase of the engine speed leads to better conditions for CAI combustion. Thanks to the analysis of all this data, the different key parameters to manage this combustion mode are identified and shown in the paper.


Author(s):  
B-C Chen ◽  
Y-Y Wu ◽  
F-C Hsieh

In order to study the effect of the crank sensor noise on the engine management system (EMS), an algorithm using a closed-loop estimator with stroke identification is proposed to estimate the engine rotational dynamics. Estimated crank angle and engine speed are used for fuel injection and ignition control systems. The closed-loop estimator design is based on a linear model by assuming that the engine rotational inertia is constant. Since the effective inertia actually varies with different crank angles, the stability of the proposed algorithm is assessed using the Lyapunov stability theorem. Performances of the proposed and traditional algorithms are evaluated using a non-linear engine model with a four-plus-one-tooth crankshaft wheel in Matlab/Simulink. The estimated crank angle and engine speed of the traditional algorithm can be significantly affected by large sensor noises resulting from the poorly grounded ignition coil. It was found that the proposed algorithm can mitigate the noise impact and thus maintain the desired engine control performance.


1988 ◽  
Vol 110 (3) ◽  
pp. 313-320 ◽  
Author(s):  
D. Cho ◽  
J. K. Hedrick

A nonlinear, “sliding mode” fuel-injection controller is designed based on a physically motivated, mathematical engine model. The designed controller can achieve a commanded air-to-fuel ratio with excellent transient properties, which offers the potential for improving fuel economy, torque transients, and emission levels. The controller is robust to model errors as well as to rapidly changing maneuvers of throttle and spark advance. The sliding mode control method offers a great potential for future engine control problems, since: it results in a relatively simple control structure that requires little on-line computing and no table lookups; it is robust to model errors and disturbances; and it can be easily adapted to a family of engines.


Author(s):  
N Ladommatos ◽  
D Rose

The mixture strength in a cylinder of a port-injected gasoline engine was monitored continuously during very rapid throttle openings. The data on mixture strength were combined with other engine data collected in order to obtain for each successive engine cycle: the air—fuel ratio within the cylinder and the change in the fuel mass accumulating on the inlet port of the cylinder being monitored. The four-cylinder spark-ignition engine used had a displacement of 1.6 litre, four valves per cylinder and multipoint sequential fuel injection controlled by an electronic management system programmed for three - way catalyst operation. All tests were conducted with the engine coolant at the temperature of 90°C and at a constant engine speed of 2000 r/min. The engine transient involved very rapid throttle openings which were completed within about 15 ms. Small and large throttle openings were investigated along with the effect of altering the type and condition of the fuel injectors. The engine response to the fast throttle opening comprised a sharp rise in the air—fuel ratio (maximum gravimetric air—fuel ratio of around 25:1) which lasted for only a single cycle, followed by a drop in the air-fuel ratio (minimum air—fuel ratio of about 10:1) and, subsequently, a gradual rise towards a stoichiometric air—fuel ratio within about 10 engine cycles.


Sign in / Sign up

Export Citation Format

Share Document