Fuel Stratification Influence on NOx Emission in a Premixed Axial Reacting Jet-in-Crossflow at High Pressure

2021 ◽  
Vol 143 (12) ◽  
Author(s):  
Bernhard Stiehl ◽  
Tommy Genova ◽  
Michelle Otero ◽  
Scott Martin ◽  
Kareem Ahmed

Abstract Three reacting jet-in-crossflow (JiC) methane/air flames were numerically investigated in a lean axially staged combustor at a pressure of five atmospheres. A detailed chemistry Star-CCM+ computational fluid dynamics (CFD) model was used with 53 species considered and the result of turbulence-governed finite-rate modeling was validated with in-house experimental data. An optically accessible test section features three side windows, allowing local flow and flame analysis with particle image velocimetry (PIV) and CH* chemiluminescence as well as pressure, temperature, and species exit measurements. The research objective was to predict and verify NOx formation of the premixed 12.7 mm axial jet. Three headend temperature levels were investigated along with three premixed jets at lean (φJet = 0.75), near-stoichiometric (φJet = 1.07), and rich (φJet = 1.78) axial fuel line equivalence ratio. Based on the matching exit emission concentration, global emission benefits were investigated by adjustment of the fuel stratification. The perfectly premixed methane/air flames of this study were shown to ignite at the lee-side of the jet. For the elevated headend temperature level T = 1800 K, the flame extended beyond the windward jet trajectory and caused high axial NO production. For industry application, a firing temperature of 1920 K was achieved with a NOx optimized fuel split of 25%, combining a lean headend (φHeadend = 0.61) with a rich (φJet = 1.78) jet equivalence ratio. This operating point allowed minimization of the combustor residence time at temperatures above 1700 K as well as combustion in a compact flame at the jet lee-side along the counter rotating vortex pair.

2005 ◽  
Vol 73 (3) ◽  
pp. 474-482 ◽  
Author(s):  
Michael W. Plesniak

This paper presents a review of research done over the past several years at Purdue on non-canonical jets-in-crossflow. It is a retrospective and an integrative compilation of results previously reported as well as some new ones. The emphasis is on jets emanating from “short” holes, with length-diameter ratios of one or less. A canonical jet-in-crossflow configuration is one in which a fully developed jet issues from a long pipe fed by a large plenum, into a semi-infinite cross flow. The configuration presented here is noncanonical in the sense that jet issues from a short hole and thus the flow is unable to “adjust” to the hole, unlike the case of a long hole in which fully developed pipe flow can be attained. This is motivated by gas turbine film cooling applications. Experimental results acquired with particle image velocimetry will primarily be presented, with some complementary information gained from RANS simulations of the flow. Many different aspects of the problem have been investigated, and in this paper the focus will be on structural features within the hole and in the developing jet and crossflow interaction. A significant result is that the in-hole vortical structures, depending on their sense of rotation, tend to augment or weaken the primary counter-rotating vortex pair. This impacts global features such as jet trajectory and spreading.


2013 ◽  
Vol 781-784 ◽  
pp. 2471-2475 ◽  
Author(s):  
B. M. Masum ◽  
M.A. Kalam ◽  
H.H. Masjuki ◽  
S. M. Palash

Active research and development on using ethanol fuel in gasoline engine had been done for few decades since ethanol served as a potential of infinite fuel supply. This paper discussed analytically and provides data on the effects of compression ratio, equivalence ratio, inlet temperature, inlet pressure and ethanol blend in cylinder adiabatic flame temperature (AFT) and nitrogen oxide (NO) formation of a gasoline engine. Olikara and Borman routines were used to calculate the equilibrium products of combustion for ethanol gasoline blended fuel. The equilibrium values of each species were used to predict AFT and the NO formation of combustion chamber. The result shows that both adiabatic flame temperature and NO formation are lower for ethanol-gasoline blend than gasoline fuel.


2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 769-776
Author(s):  
Fei Ren ◽  
Longkai Xiang ◽  
Huaqiang Chu ◽  
Weiwei Han

The reduction of nitrogen oxides in the high temperature flame is the key factor affecting the oxygen-enriched combustion performance. A numerical study using an OPPDIF code with detailed chemistry mechanism GRI 3.0 was carried out to focus on the effect of strain rate (25-130 s?1) and CO2 addition (0-0.59) on the oxidizer side on NO emission in CH4 / N2 / O2 counter-flow diffusion flame. The mole fraction profiles of flame structures, NO, NO2 and some selected radicals (H, O, OH) and the sensitivity of the dominant reactions contributing to NO formation in the counter-flow diffusion flames of CH4\/ N2 /O2 and CH4 / N2 / O2 / CO2 were obtained. The results indicated that the flame temperature and the amount of NO were reduced while the sensitivity of reactions to the prompt NO formation was gradually increased with the increasing strain rate. Furthermore, it is shown that with the increasing CO2 concentration in oxidizer, CO2 was directly involved in the reaction of NO consumption. The flame temperature and NO production were decreased dramatically and the mechanism of NO production was transformed from the thermal to prompt route.


2001 ◽  
Vol 446 ◽  
pp. 347-373 ◽  
Author(s):  
L. CORTELEZZI ◽  
A. R. KARAGOZIAN

Among the important physical phenomena associated with the jet in crossflow is the formation and evolution of vortical structures in the flow field, in particular the counter-rotating vortex pair (CVP) associated with the jet cross-section. The present computational study focuses on the mechanisms for the dynamical generation and evolution of these vortical structures. Transient numerical simulations of the flow field are performed using three-dimensional vortex elements. Vortex ring rollup, interactions, tilting, and folding are observed in the near field, consistent with the ideas described in the experimental work of Kelso, Lim & Perry (1996), for example. The time-averaged effect of these jet shear layer vortices, even over a single period of their evolution, is seen to result in initiation of the CVP. Further insight into the topology of the flow field, the formation of wake vortices, the entrainment of crossflow, and the effect of upstream boundary layer thickness is also provided in this study.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3224
Author(s):  
Ziwan Li ◽  
Yixiang Yuan ◽  
Baoting Guo ◽  
V. L. Varsegov ◽  
Jun Yao

Transverse jets in crossflow are widely used in energy systems, especially as dilution air jets, fuel/air mixers, and combustion equipment, and have received extensive attention and plenty of research. However, the studies of the circular transverse jet issued from a circular gap at the circumferential direction of a tube in crossflow are very limited. This paper studies a relatively new jet: the circular transverse jet. Firstly, numerical calculations are conducted under different turbulence models but with the same boundary conditions. By comparing the numerical results of different turbulence models with the existing experimental data, the turbulence model which is most suitable for the numerical calculation of the circular transverse jet is selected. Then, this turbulence model is used to calculate and analyze the flow field structure and its characteristics. It is found that due to the aerodynamic barrier effect of the high-velocity jet, a negative pressure zone is formed behind the jet trajectory; the existence of the negative pressure zone causes the formation of a vortex structure and a recirculation zone downstream the circular transverse jet; and the length/width ratio of the recirculation zone does not change with the changes of the crossflow and the jet parameters. It means that the recirculation zone is a fixed shape for a definite device. This would be fundamental references for the studying of fuel/air mixing characteristics and combustion efficiency when the circular transverse jet is used as a fuel/air mixer and stable combustion system.


Author(s):  
Yeshayahou Levy ◽  
Vladimir Erenburg ◽  
Valery Sherbaum ◽  
Vitali Ovcharenko ◽  
Leonid Rosentsvit ◽  
...  

Lean premixed combustion is one of the widely used methods for NOx reduction in gas turbines (GT). When this method is used combustion takes place under low Equivalence Ratio (ER) and at relatively low combustion temperature. While reducing temperature decreases NOx formation, lowering temperature reduces the reaction rate of the hydrocarbon–oxygen reactions and deteriorates combustion stability. The objective of the present work was to study the possibility to decrease the lower limit of the stable combustion regime by the injection of free radicals into the combustion zone. A lean premixed gaseous combustor was designed to include a circumferential concentric pilot flame. The pilot combustor operates under rich fuel to air ratio, therefore it generates a significant amount of reactive radicals. The experiments as well as CFD and CHEMKIN simulations showed that despite of the high temperatures obtained in the vicinity of the pilot ring, the radicals’ injection from the pilot combustor has the potential to lower the limit of the global ER (and temperatures) while maintaining stable combustion. Spectrometric measurements along the combustor showed that the fuel-rich pilot flame generates free radicals that augment combustion stability. In order to study the relevant mechanisms responsible for combustion stabilization, CHEMKIN simulations were performed. The developed chemical network model took into account some of the basic parameters of the combustion process: ER, residence time, and the distribution of the reactances along the combustor. The CHEMKIN simulations showed satisfactory agreement with experimental results.


Author(s):  
Peter Therkelsen ◽  
Tavis Werts ◽  
Vincent McDonell ◽  
Scott Samuelsen

A commercially available natural gas fueled gas turbine engine was operated on hydrogen. Three sets of fuel injectors were developed to facilitate stable operation while generating differing levels of fuel/air premixing. One set was designed to produce near uniform mixing while the others have differing degrees of non-uniformity. The emissions performance of the engine over its full range of loads is characterized for each of the injector sets. In addition, the performance is also assessed for the set with near uniform mixing as operated on natural gas. The results show that improved mixing and lower equivalence ratio decreases NO emission levels as expected. However, even with nearly perfect premixing, it is found that the engine, when operated on hydrogen, produces a higher amount of NO than when operated with natural gas. Much of this attributed to the higher equivalence ratios that the engine operates on when firing hydrogen. However, even at the lowest equivalence ratios run at low power conditions, higher NO was observed. Analysis of the potential NO formation effects of residence time, kinetic pathways of NO production via NNH, and the kinetics of the dilute combustion strategy used are evaluated. While no one mechanism appears to explain the reasons for the higher NO, it is concluded that each may be contributing to the higher NO emissions observed with hydrogen. In the present configuration with the commercial control system operating normally, it is evident that system level effects are also contributing to the observed NO emission differences between hydrogen and natural gas.


Author(s):  
Antonio C. A. Lipardi ◽  
Jeffrey M. Bergthorson ◽  
Gilles Bourque

Oxides of nitrogen (NOx) are pollutants emitted by combustion processes during power generation and transportation that are subject to increasingly stringent regulations due to their impact on human health and the environment. One NOx reduction technology being investigated for gas-turbine engines is exhaust-gas recirculation (EGR), either through external exhaust-gas recycling or staged combustion. In this study, the effects of different percentages of EGR on NOx production will be investigated for methane–air and propane–air flames at a selected adiabatic flame temperature of 1800 K. The variability and uncertainty of the results obtained by the gri-mech 3.0 (GRI), San-Diego 2005 (SD), and the CSE thermochemical mechanisms are assessed. It was found that key parameters associated with postflame NO emissions can vary up to 192% for peak CH values, 35% for thermal NO production rate, and 81% for flame speed, depending on the mechanism used for the simulation. A linear uncertainty analysis, including both kinetic and thermodynamic parameters, demonstrates that simulated postflame nitric oxide levels have uncertainties on the order of ±50–60%. The high variability of model predictions, and their relatively high associated uncertainties, motivates future experiments of NOx formation in exhaust-gas-diluted flames under engine-relevant conditions to improve and validate combustion and NOx design tools.


Sign in / Sign up

Export Citation Format

Share Document