Fabrication and Testing of Bioinspired Surface Designs for Friction Reduction at the Piston Ring and Liner Interface

2021 ◽  
pp. 1-40
Author(s):  
Shelby Maddox ◽  
Arup Gangopadhyay ◽  
Hamed Ghaednia ◽  
Jiyu Cai ◽  
Xiaoxiao Han ◽  
...  

Abstract The piston ring and liner interface is a major source of friction loss in automotive combustion engines. This loss can be mitigated by learning from surfaces from nature that manipulate friction. In this study, novel fabrication and testing methods were developed and used to efficiently compare 3D bioinspired surface designs to existing piston liner surface topographies. Surface designs inspired by frog toes were fabricated using two-photon lithography, and their frictional performance is compared to that of typical piston liner topography. These designs reduce surface friction by an average of 18%, and up to 39%, compared to a flat control. The developed fabrication and testing methods allow comparison with existing topographies without needing to transfer the designs to the original materials and provide an efficient approach for designing surfaces to meet the frictional challenges of the future.

Author(s):  
Yang Hu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Jiazheng Fan

The cylinder liner surface finish, which is commonly produced using the honing technique, is an essential factor of engine performance. The characteristics of the texture features, including the cross-hatch angle, the plateau roughness and the groove depth, significantly affect the performance of the ring pack–cylinder liner system. However, due to the influence of the honed texture features, the surface roughness of the liner is not subject to Gaussian distribution. To simulate the mixed lubrication performance of the ring–liner system with non-Gaussian roughness, the combination of a two-scale homogenization technique and a deterministic asperities contact method is adopted. In this study, a one-dimensional homogenized mixed lubrication model is established to study the influence of groove parameters on the load-carrying capacity and the frictional performance of the piston ring–liner system. The ring profile, plateau roughness, and operating conditions are taken into consideration. The main findings are that for nonflat ring, shallow and wide groove textures are beneficial for friction reduction, and there exists an optimum groove density that makes the friction minimum; for flat ring, wide and sparse grooves help improving the tribological performance, and there exists an optimum groove depth that makes the friction minimum.


Author(s):  
Nathan W. Bolander ◽  
Farshid Sadeghi ◽  
Gordon R. Gerber

A numerical model has been developed to investigate the effects of surface modifications on the lubrication condition and frictional loss at the interface between a piston ring and cylinder liner. The effects of boundary and mixed lubrication conditions were included through the use of a fully deterministic mixed lubrication model, which provides detailed information of the rough contact zone throughout the stroke. The effects of non-Gaussian surface characteristics (e.g. skewness) on the cycle-average frictional performance are discussed. Surface modifications in the form of circular profile dimples were added to the cylinder liner and their effects were investigated. The modified cylinder liner was shown to reduce the cycle-average coefficient of friction by 55–65%, while total energy loss per cycle was reduced by 20–40%.


2017 ◽  
Vol 69 (2) ◽  
pp. 282-299 ◽  
Author(s):  
Yang Hu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Jiazheng Fan

Purpose During running-in, the change in the honed cylinder liner surface alters the performance and efficiency of the piston ring-pack system. The present paper, thus, aims to investigate the surface topography and wear and friction evolution of a cylinder liner surface during the running-in tests on a reciprocating ring–liner tribometer under a mixed lubrication regime. After an initial period of rapid wear termed “running-in wear”, a relatively long-term steady-state surface topography can emerge. A numerical model is developed to predict the frictional performance of a piston ring-pack system at the initial and steady-state stages. Design/methodology/approach The liner surfaces are produced by slide honing (SH) and plateau honing (PH). The bearing area parameter (Rk family), commonly used in the automotive industry, is used to quantitatively characterize the surface topography change during the running-in process. A wear volume-sensitive surface roughness parameter, Rktot, is used to show the wear evolution. Findings The experimental results show that a slide-honed surface leads to reduced wear, and it reduces the costly running-in period compared to the plateau-honed surface. The simulation results show that running-in is a beneficial wear process that leads to a reduced friction mean effective pressure at the steady-state. Originality/value To simulate the mixed lubrication performance of a ring–liner system with non-Gaussian roughness, a one-dimensional homogenized mixed lubrication model was established. The real surface topography instead of its statistical properties is taken into account.


Friction ◽  
2021 ◽  
Author(s):  
G. Boidi ◽  
P. G. Grützmacher ◽  
A. Kadiric ◽  
F. J. Profito ◽  
I. F. Machado ◽  
...  

AbstractTextured surfaces offer the potential to promote friction and wear reduction by increasing the hydrodynamic pressure, fluid uptake, or acting as oil or debris reservoirs. However, texturing techniques often require additional manufacturing steps and costs, thus frequently being not economically feasible for real engineering applications. This experimental study aims at applying a fast laser texturing technique on curved surfaces for obtaining superior tribological performances. A femtosecond pulsed laser (Ti:Sapphire) and direct laser interference patterning (with a solid-state Nd:YAG laser) were used for manufacturing dimple and groove patterns on curved steel surfaces (ball samples). Tribological tests were carried out under elasto-hydrodynamic lubricated contact conditions varying slide-roll ratio using a ball-on-disk configuration. Furthermore, a specific interferometry technique for rough surfaces was used to measure the film thickness of smooth and textured surfaces. Smooth steel samples were used to obtain data for the reference surface. The results showed that dimples promoted friction reduction (up to 20%) compared to the reference smooth specimens, whereas grooves generally caused less beneficial or detrimental effects. In addition, dimples promoted the formation of full film lubrication conditions at lower speeds. This study demonstrates how fast texturing techniques could potentially be used for improving the tribological performance of bearings as well as other mechanical components utilised in several engineering applications.


Author(s):  
Grant Smedley ◽  
S. H. Mansouri ◽  
Tian Tian ◽  
Victor W. Wong

Friction from the power cylinder represents a significant contribution to the total mechanical losses in internal combustion engines. A reduction in piston ring friction would therefore result in higher efficiency, lower fuel consumption, and reduced emissions. In this study, models incorporating piston ring dynamics and piston secondary motion with elastic skirt deformation were applied to a Waukesha natural gas power generation engine to identify the main contributors to friction within the piston and ring pack system. Based on model predictions, specific areas for friction reduction were targeted and low-friction design strategies were devised. The most significant contributors to friction were identified as the top ring, the oil control ring, and the piston skirt. Model predictions indicated that the top ring friction could be reduced by implementing a skewed barrel profile design or an upward piston groove tilt design, and oil control ring friction could be reduced by decreasing ring tension. Piston design parameters such as skirt profile, piston-to-liner clearance, and piston surface characteristics were found to have significant potential for the reduction of piston skirt friction. Designs were also developed to mitigate any adverse effects that were predicted to occur as a result of implementation of the low-friction design strategies. Specifically, an increase in wear was predicted to occur with the upward piston groove tilt design, which was eliminated by the introduction of a positive static twist on the top ring. The increase in oil consumption resulting form the reduction in the oil control ring tension was mitigated by the introduction of a negative static twist on the second ring. Overall, the low-friction design strategies were predicted to have potential to reduce piston ring friction by 35% and piston friction by up to 50%. This would translate to an improvement in brake thermal efficiency of up to 2%, which would result in a significant improvement in fuel economy and a substantial reduction in emissions over the life of the engine.


2020 ◽  
Vol 63 (2) ◽  
pp. 371-381
Author(s):  
Xingyu Liang ◽  
Xiaohui Wang ◽  
Yin Liu ◽  
Xu Wang ◽  
Gequn Shu ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 139 ◽  
Author(s):  
Wenhua Li ◽  
Baihong Yu ◽  
Yutao Lv ◽  
Yan Shen ◽  
Ruoxuan Huang ◽  
...  

In order to investigate the friction and wear behavior between the nodular cast iron cylinder liner (Fe) and CuSn coated piston ring under heavy-duty conditions, piston rings with chromium(Cr) coating and CuSn-Cr coating were tested using the piston ring reciprocating liner test rig at the simulated working conditions of 56 MPa, 200 r/min, 190 °C. Compared with the Cr/Fe pair, the CuSn coating consumption of the CuSn-Cr/Fe pair made friction coefficient and cylinder wear loss decrease by 2.8% and 51.5%, respectively. Different size Sn patches worn from the CuSn coated piston ring were embedded into the cylinder liner surface based on the surface topography. This process was shown to reduce the surface roughness of a cylinder liner and form flatter plateau structures. Chemical elements analysis indicated that plateau structures on the cylinder liner surface matched with CuSn-Cr coated ring are helpful to promote the tribo-chemical reaction and generate the reactive products to protect the mutually contacted asperities.


Sign in / Sign up

Export Citation Format

Share Document