Prediction of Yield Strength of Selective Laser Melted Ti-6Al-4V Alloy Using Melt Pool Geometry

Author(s):  
Mostafa Mahdavi ◽  
Steven Y. Liang ◽  
Hamid Garmestani

Abstract Additive manufacturing (AM) method has attracted huge interest in the past decade due to its ability in building complicated geometries with a much lower cost than conventionally produced parts. In AM, which the part is produced in a layer by layer manner, by controlling the AM process parameters, the final mechanical properties can be controlled. In other words, the AM process parameters define the amount of energy that is transferred into the powder, which has a direct relationship with the final mechanical properties. The amount of energy for any sets of AM process parameters affects the melt pool geometry. In this study, the correlation between melt pool geometry and mechanical properties of selective laser melted (SLM) Ti-6Al-4V samples is investigated

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 683 ◽  
Author(s):  
Sudeepta Mondal ◽  
Daniel Gwynn ◽  
Asok Ray ◽  
Amrita Basak

Metal additive manufacturing (AM) works on the principle of consolidating feedstock material in layers towards the fabrication of complex objects through localized melting and resolidification using high-power energy sources. Powder bed fusion and directed energy deposition are two widespread metal AM processes that are currently in use. During layer-by-layer fabrication, as the components continue to gain thermal energy, the melt pool geometry undergoes substantial changes if the process parameters are not appropriately adjusted on-the-fly. Although control of melt pool geometry via feedback or feedforward methods is a possibility, the time needed for changes in process parameters to translate into adjustments in melt pool geometry is of critical concern. A second option is to implement multi-physics simulation models that can provide estimates of temporal process parameter evolution. However, such models are computationally near intractable when they are coupled with an optimization framework for finding process parameters that can retain the desired melt pool geometry as a function of time. To address these challenges, a hybrid framework involving machine learning-assisted process modeling and optimization for controlling the melt pool geometry during the build process is developed and validated using experimental observations. A widely used 3D analytical model capable of predicting the thermal distribution in a moving melt pool is implemented and, thereafter, a nonparametric Bayesian, namely, Gaussian Process (GP), model is used for the prediction of time-dependent melt pool geometry (e.g., dimensions) at different values of the process parameters with excellent accuracy along with uncertainty quantification at the prediction points. Finally, a surrogate-assisted statistical learning and optimization architecture involving GP-based modeling and Bayesian Optimization (BO) is employed for predicting the optimal set of process parameters as the scan progresses to keep the melt pool dimensions at desired values. The results demonstrate that a model-based optimization can be significantly accelerated using tools of machine learning in a data-driven setting and reliable a priori estimates of process parameter evolution can be generated to obtain desired melt pool dimensions for the entire build process.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6527
Author(s):  
Meet Gor ◽  
Harsh Soni ◽  
Vishal Wankhede ◽  
Pankaj Sahlot ◽  
Krzysztof Grzelak ◽  
...  

Additive manufacturing (AM) is one of the recently studied research areas, due to its ability to eliminate different subtractive manufacturing limitations, such as difficultly in fabricating complex parts, material wastage, and numbers of sequential operations. Laser-powder bed fusion (L-PBF) AM for SS316L is known for complex part production due to layer-by-layer deposition and is extensively used in the aerospace, automobile, and medical sectors. The process parameter selection is crucial for deciding the overall quality of the SS316L build component with L-PBF AM. This review critically elaborates the effect of various input parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness, on various mechanical properties of AM SS316L, such as tensile strength, hardness, and the effect of porosity, along with the microstructure evolution. The effect of other AM parameters, such as the build orientation, pre-heating temperature, and particle size, on the build properties is also discussed. The scope of this review also concerns the challenges in practical applications of AM SS316L. Hence, the residual stress formation, their influence on the mechanical properties and corrosion behavior of the AM build part for bio implant application is also considered. This review involves a detailed comparison of properties achievable with different AM techniques and various post-processing techniques, such as heat treatment and grain refinement effects on properties. This review would help in selecting suitable process parameters for various human body implants and many different applications. This study would also help to better understand the effect of each process parameter of PBF-AM on the SS316L build part quality.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Author(s):  
Sagar Sarkar ◽  
Cheruvu Siva Kumar ◽  
Ashish Kumar Nath

One of the most popular additive manufacturing processes is laser based direct metal laser sintering process which enables us to make complex three dimensional parts directly from CAD models. Due to layer by layer formation, parts built in this process tend to be anisotropic in nature. Suitable heat treatment can reduce this anisotropic behaviour by changing the microstructure. Depending upon the applications, a wide range of mechanical properties can be achieved between 482–621° C temperature for precipitation-hardened stainless steels. In the present study effect of different heat treatment processes, namely solution annealing, ageing and overaging, on tensile strength, hardness and wear properties has been studied in detail. Suitable metallurgical and mechanical characterization techniques have been applied wherever required, to support the experimental observations. Results show H900 condition gives highest yield strength and lowest tensile strain at break whereas solution annealing gives lowest yield strength and as-built condition gives highest tensile strain at break. SEM images show that H900 and H1150 condition produces brittle and ductile morphology respectively which in turn gives highest and lowest hardness value respectively.XRD analysis shows presence of austenite phases which can increase hardness at the cost of ductility. Average wear loss for H900 condition is highest whereas it is lowest for solution annealed condition. Further optical and SEM images have been taken to understand the basic wear mechanism involved.


2021 ◽  
Vol 225 ◽  
pp. 01011
Author(s):  
Marina Panchenko ◽  
Eugeny Melnikov ◽  
Valentina Moskvina ◽  
Sergey Astafurov ◽  
Galina Maier ◽  
...  

A comparative study of the mechanical properties, fracture mechanisms and hydrogen embrittlement peculiarities was carried out using the specimens of austenitic CrNi steel produced by two different methods: wire-feed electron beam additive manufacturing and conventional casting followed by solid-solution treatment. Hydrogen-induced reduction of ductility and the increase in the yield strength are observed in steel specimens produced by both methods. Despite hydrogen embrittlement index is comparable in them, the increase in the yield strength after hydrogen-charging is different: 25 MPa for cast steel and 175 MPa for additively manufactured steel. This difference is associated with the peculiarities of phase composition and phase distribution in steels produced by different methods.


Author(s):  
Thomas Robinson ◽  
Malcolm Williams ◽  
Harish Rao ◽  
Ryan P. Kinser ◽  
Paul Allison ◽  
...  

Abstract In recent years, additive manufacturing (AM) has gained prominence in rapid prototyping and production of structural components with complex geometries. Magnesium alloys, whose strength-to-weight ratio is superior compared to steel and aluminum alloys, have shown potential in lightweighting applications. However, commercial beam-based AM technologies have limited success with magnesium alloys due to vaporization and hot cracking. Therefore, as an alternative approach, we propose the use of a near net-shape solid-state additive manufacturing process, Additive Friction Stir Deposition (AFSD), to fabricate magnesium alloys in bulk. In this study, a parametric investigation was performed to quantify the effect of process parameters on AFSD build quality including volumetric defects and surface quality in magnesium alloy AZ31B. In order to understand the effect of the AFSD process on structural integrity in the magnesium alloy AZ31B, in-depth microstructure and mechanical property characterization was conducted on a bulk AFSD build fabricated with a set of acceptable process parameters. Results of the microstructure analysis of the as-deposited AFSD build revealed bulk microstructure similar to wrought magnesium alloy AZ31 plate. Additionally, similar hardness measurements were found in AFSD build compared to control wrought specimens. While tensile test results of the as-deposited AFSD build exhibited a 20 percent drop in yield strength, nearly identical ultimate strength was observed compared to the wrought control. The experimental results of this study illustrate the potential of using the AFSD process to additively manufacture Mg alloys for load bearing structural components with achieving wrought-like microstructure and mechanical properties.


2021 ◽  
pp. 095400832110419
Author(s):  
Lovin K John ◽  
Ramu Murugan ◽  
Sarat Singamneni

The development of fused filament fabrication has extended the range of application of additive manufacturing in various areas of research. However, the mechanical strength of the fused filament fabrication–printed parts were considerably lower than that of parts fabricated by other conventional methods, owing to the observed anisotropic behaviour and formation of voids by weak interlayer diffusion. Intense studies on the effect of design and process parameters of the printed parts on the mechanical properties have been done, whereas studies on the effect of build orientations and raster patterns needs special concern. The main aim of this work is to fabricate parts printed using quasi-isotropic laminate arrangement of rasters, achieved by a raster layup of [45/0/−45/90]s, and to compare their mechanical properties with those of the commonly used 0°/90° (cross) and 45°/−45° (crisscross) raster oriented parts. The quasi-isotropic–oriented samples were observed with improved mechanical behaviour in tensile, compressive, flexural and impact tests compared to the commonly employed raster orientations.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 544
Author(s):  
Yuyu He ◽  
Yijian Liu ◽  
Jiquan Yang ◽  
Fei Xie ◽  
Wuyun Huang ◽  
...  

In metal additive manufacturing without interlayer cooling, the macro-size of the layer itself is difficult to control due to the thermal storage effect. The effect of interlayer cooling was studied by cladding Ni-based coatings on the substrate of ductile iron. The results show that under the same process parameters, compared with non-interlayer cooling deposition, the dilution rate is better, and the thickness increase of interlayer cooling deposition is more uniform, which is conducive to controlling the macro-size of the interlayer cooling deposition. Furthermore, interlayer cooling deposition has fewer impurities and more uniform microstructures. Moreover, the average grain size is refined and the dendrite growth is inhibited, which improves the mechanical properties of the coating. Therefore, the hardness of the interlayer cooling specimens is greater than that of the non-interlayer-cooled specimens.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 672 ◽  
Author(s):  
Elena Verdejo de Toro ◽  
Juana Coello Sobrino ◽  
Alberto Martínez Martínez ◽  
Valentín Miguel Eguía ◽  
Jorge Ayllón Pérez

New technologies are offering progressively more effective alternatives to traditional ones. Additive Manufacturing (AM) is gaining importance in fields related to design, manufacturing, engineering and medicine, especially in applications which require complex geometries. Fused Deposition Modelling (FDM) is framed within AM as a technology in which, due to their layer-by-layer deposition, thermoplastic polymers are used for manufacturing parts with a high degree of accuracy and minimum material waste during the process. The traditional technology corresponding to FDM is Polymer Injection Moulding, in which polymeric pellets are injected by pressure into a mould using the required geometry. The increasing use of PA6 in Additive Manufacturing makes it necessary to study the possibility of replacing certain parts manufactured by injection moulding with those created using FDM. In this work, PA6 was selected due to its higher mechanical properties in comparison with PA12. Moreover, its higher melting point has been a limitation for 3D printing technology, and a further study of composites made of PA6 using 3D printing processes is needed. Nevertheless, analysis of the mechanical response of standardised samples and the influence of the manufacturing process on the polyamide’s mechanical properties needs to be carried out. In this work, a comparative study between the two processes was conducted, and conclusions were drawn from an engineering perspective.


Sign in / Sign up

Export Citation Format

Share Document