Impact Characteristics of a Carbonated Water Droplet On Hydrophobic Surface

Author(s):  
Abba Abdulhamid Abubakar ◽  
Bekir Sami Yilbas ◽  
Hussain Al-Qahtani

Abstract Carbonated water drops impact on a hydrophobic surface is examined. The influence of CO2 gas bubbles in droplet fluid on impacting droplet characteristics, such as spreading rates and restitution coefficient, are explored. The predictions of droplet wetting diameter and spreading rates are validated through the experimental data obtained from high-speed recording. The findings reveal that predictions agree well with the experimental data. CO2 gas bubbles in the droplet are compressed by the total impact pressure of the droplet liquid while slightly reducing the gas bubble sizes. The small size of close by bubbles at high pressure can merge forming large size bubbles, which occur towards the end of droplet spreading and retraction periods. The pressure increase in the fluid gives rise to increased vertical height of the droplet and slightly reduces the droplet contact diameter on the impacted surface. The work done during the compression of CO2 gas in bubbles lowers the restitution coefficient of the droplet after the retraction period.

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Abba Abdulhamid Abubakar ◽  
Bekir Sami Yilbas ◽  
Ghassan Hassan ◽  
Hussain Al-Qahtani ◽  
Haider Ali ◽  
...  

Abstract Water droplet impacting onto a hydrophobic surface is considered and the influence of the surface wetting state on the droplet dynamics is examined. Pressure variation in the impacting droplet is predicted numerically using the level set model. The droplet spreading and the retraction on the hydrophobic surface are assessed for various wetting states of the hydrophobic surface. Experiment is carried out to validate the predictions of the droplet shape and the restitution coefficient. It is found that predictions of impacting droplet shape and the restitution coefficient agree with those obtained from the experiment. The local pressure peaks formed in the droplet fluid, particularly in the retraction period, causes alteration of the droplet vertical height and the shape. Droplet spreading is influenced by the wetting state of the hydrophobic surface; hence, increasing contact angle of the hydrophobic surface lowers the spreading diameter of the droplet on the surface. The transition time of the droplet changes with the wetting state of the hydrophobic surface such that increasing droplet contact angle reduces the transition time of the droplet on the surface. The droplet remains almost round after the first bounding for large contact angle hydrophobic surface.


2021 ◽  
Author(s):  
Abba Abubakar ◽  
Bekir Yilbas ◽  
Hussain Al-Qahtani ◽  
Ammar Alzaydi

Abstract Impacting droplet characteristics on hydrophobic surfaces can be altered by introducing surface oscillations. Impacting water droplet contact duration, spreading, retraction, and rebounding behaviors are examined at various sonic excitation frequencies of the hydrophobic membrane. Membrane oscillation and droplet behavior are analyzed by utilizing a high-speed camera. The restitution coefficient and membrane dynamics are formulated and the findings are compared with those of the experiments. It is found that the mode of membrane oscillation changes as the sonic excitation frequency is changed. The droplet spreading and retraction rates reduce while rebound height and restitution coefficient increase at a sonic excitation frequency of 75 Hz. However, further increase of the excitation frequency results in reduced rebound height because of increased energy dissipation on the impacted surface. The droplet contact (transition time) duration reduces as the excitation frequency increases. Increasing droplet Weber number enhances the droplet contact period on the membrane, which becomes more apparent at low frequencies of sonic excitation.


Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Joanna Karcz ◽  
Beata Mackiewicz

AbstractThe effects of baffling of an agitated vessel on the production of floating particles suspension are presented in this paper. Critical agitator speed, needed for particles dispersion in a liquid agitated in a vessel of the inner diameter of 0.295 m, was determined. The just drawdown agitator speeds were defined analogously to the Zwietering criterion. Specific agitation energy was calculated from the power consumption experimental data obtained by means of the strain gauge method. The experiments were carried out for twelve configurations of the baffles differing in number, length and their arrangement in the vessels. The following high-speed impellers were used: up- and downpumping six blade pitched blade turbines, Rushton turbine, and propeller. The impeller was located in the vessel in the height equal to two-thirds or one-third of the vessel diameter from the bottom of the vessel. The results were described in the form of a dimensionless equation.


Author(s):  
Penghao Duan ◽  
Choon S. Tan ◽  
Andrew Scribner ◽  
Anthony Malandra

The measured loss characteristic in a high-speed cascade tunnel of two turbine blades of different designs showed distinctly different trend with exit Mach number ranging from 0.8 to 1.4. Assessments using steady RANS computation of the flow in the two turbine blades, complemented with control volume analyses and loss modelling, elucidate why the measured loss characteristic looks the way it is. The loss model categorizes the total loss in terms of boundary layer loss, trailing edge loss and shock loss; it yields results in good agreement with the experimental data as well as steady RANS computed results. Thus RANS is an adequate tool for determining the loss variations with exit isentropic Mach number and the loss model serves as an effective tool to interpret both the computational and experimental data. The measured loss plateau in Blade 1 for exit Mach number of 1 to 1.4 is due to a balance between a decrease of blade surface boundary layer loss and an increase in the attendant shock loss with Mach number; this plateau is absent in Blade 2 due to a greater rate in shock loss increase than the corresponding decrease in boundary layer loss. For exit Mach number from 0.85 to 1, the higher loss associated with shock system in Blade 1 is due to the larger divergent angle downstream of the throat than that in Blade 2. However when exit Mach number is between 1.00 and 1.30, Blade 2 has higher shock loss. For exit Mach number above around 1.4, the shock loss for the two blades is similar as the flow downstream of the throat is completely supersonic. In the transonic to supersonic flow regime, the turbine design can be tailored to yield a shock pattern the loss of which can be mitigated in near equal amount of that from the boundary layer with increasing exit Mach number, hence yielding a loss plateau in transonic-supersonic regime.


2012 ◽  
Vol 155-156 ◽  
pp. 12-17 ◽  
Author(s):  
Lian Xu Wang ◽  
Da Wei Qu ◽  
Chang Qing Song ◽  
Ye Tian

To research the performance optimization of high speed car diesel engine,firstly according to the characteristic of car diesel engine with Variable Nozzle Turbocharger (VNT), one-dimensional cycle model of the engine was established by using simulation software BOOST and validated by experimental data in this paper. The turbine blades’ opening corresponding to different speed was determined. Therefore the problem that the VNT surges at low engine speed and the inlet air flow is insufficient at high speed was solved. Based on the above model, this paper improved the efficiency of the engine by optimizing the compression ratio and the distribution phase of camshaft and then used the experimental data to check the simulation results. Meanwhile the fuel consumption and the possibility of the engine operation roughness decreased.


2011 ◽  
Vol 291-294 ◽  
pp. 710-714
Author(s):  
Jun Min Xiao ◽  
Ying Xu

Mold steel 3Cr2Mo has been used widely in manufacturing of plastic mold formed parts, owing to fine mechanical properties. However, it is also very difficult to cut mold formed parts of steel 3Cr2Mo due to high hardness. Ordinary NC cutting method of steel 3Cr2Mo is unable to relate to modern mold manufacturing due to bad cutting property, so it is extremely significant for improving cutting property of steel 3Cr2Mo to study the high speed milling technology. On the basis of improving the traditional cutting force formula, the mathematical model of high speed milling force for steel 3Cr2Mo was derived and solved by using the experimental data and constructing matrix equation based on MATLAB software. Comparing with experimental data, the error of mathematical model of high speed milling force could be controlled within 6 percent. Due to high precision the model of high speed milling force can meet practical engineering requirement and has great value in the fields of CAD/CAM/CAE.


Author(s):  
Charles C. Maneri ◽  
Peter F. Vassallo

The dynamic behavior of single bubbles rising in quiescent liquid Suva (R134a) in a duct has been examined through the use of a high speed video system. Size, shape and velocity measurements obtained with the video system reveal a wide variety of characteristics for the bubbles as they rise in both finite and infinite media. This data, coupled with previously published data for other working fluids, has been used to assess and extend a rise velocity model given by Fan and Tsuchiya. As a result of this assessment, a new rise velocity model has been developed which maintains the physically consistent characteristics of the surface tension in the distorted bubbly regime. In addition, the model is unique in that it covers the entire range of bubble sizes contained in the spherical, distorted and planar slug regimes.


2018 ◽  
Vol 40 (2) ◽  
pp. 12-19
Author(s):  
Y.Y. Kovetska

Research review of phenomenon for slip flow in micro and nanocannels is presented in the paper. The analysis of theoretical and experimental data characterizing the slip length is carried out. In slip flow in microchannels the slip length is affected by the contact angle of the liquid with the surface, shear stress, pressure, dissipative heating, the amount and nature of the dissolved gas in the liquid, electrical characteristics, surface roughness. Studies of flow in microchannels with hydrophobic walls, which are based on molecular dynamics, showed that the slip length has order of 20 nm. This is much less than the values observed in the experiment. The introduction of an effective (apparent) slip length suggests the existence of a thin layer of gas bubbles near the hydrophobic surface or liquid layer with low value of viscosity and density. Since the idealized model for the total coverage of a hydrophobic surface by gas bubbles gives, as a rule, overestimated values of the slip length in comparison with experimental ones, some researchers consider the inhomogeneous coating of the wall by gas bubbles. In this case, the effect of a layer with a lower viscosity on the slip length turns out to be weaker.


2017 ◽  
Author(s):  
Fu Zhang ◽  
Yafei Wang ◽  
Wei Wang ◽  

A comparative analysis of the kinematic parameters of a goat on different slopes was conducted to study the kinematic parameters of goats on different slopes with walking mechanics. The uphill walking processes on different slopes (0°, 5°, 10°, 15°, 20°, 25° and 30°) were recorded by a high speed video system (VRI Phantom M110). The experimental image results were processed and analyzed using PCC and MATLAB software. The kinematic parameters were obtained from the goat walking on different slopes; these parameters are the changes of centroid with displacement, speed with time, and acceleration with time. As the gradient in the uphill process increases, the range of centroid fluctuation ranges from 0.079 to 0.59 and the rate of change ranges from 0.4 to 2.2 m/s, while the acceleration of the goat slope decreases. The present research can provide theoretical basis and experimental data for the design of a biomimetic agricultural slope walking mechanism.


Sign in / Sign up

Export Citation Format

Share Document