Fabrication, Mechanics, and Reliability Analysis for 3D Printed Lattice Designs

Author(s):  
Nitin Nagesh Kulkarni ◽  
Stephen Ekwaro-Osire ◽  
Paul Egan

Abstract The use of 3D printing for lattice structures has led to advances in diverse applications benefitting from mechanically efficient designs. 3D printed lattices are often used to carry loads, however, printing defects and inconsistencies potentially hinder performance. Here, we investigate the design, fabrication, mechanics, and reliability of lattices with repeating cubic unit cells using probabilistic analysis. Lattices were designed with 500µm diameter beams and unit cell lengths from 0.8mm to 1.6mm. Lattices were printed with stereolithography and had average beam diameters from 509µm to 622µm, thereby demonstrating a deviation from design intentions. Mechanical experiments were conducted to quantify the exponential increase in yield stress for the relative density of lattices that facilitated probabilistic failure analysis. Sensitivity analysis demonstrated performance was most sensitive to fluctuations in beam diameter (74%) and less to lattice yield stress (8%) for lattices with 1.6mm unit cells while lattices with smaller 1.0mm unit cells were most sensitive to yield stress (48%) and to beam diameter (43%) fluctuations. These findings provide new insights linking design, fabrication, mechanics, and reliability analysis for improved system design that is crucial for engineers to consider as 3D printing becomes more widely adopted.

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Sujan Shrestha ◽  
Affan A. Baba ◽  
Syed Muzahir Abbas ◽  
Mohsen Asadnia ◽  
Raheel M. Hashmi

A simple metasurface integrated with horn antenna exhibiting wide bandwidth, covering full Ku-band using 3D printing is presented. It consists of a 3D-printed horn and a 3D-printed phase transformation surface placed at the horn aperture. Considering the non-uniform wavefront of 3D printed horn, the proposed 3D-printed phase transformation surface is configured by unit cells, consisting of a cube in the centre which is supported by perpendicular cylindrical rods from its sides. Placement of proposed surface helps to improve the field over the horn aperture, resulting in lower phase variations. Both simulated and measured results show good radiation characteristics with lower side lobe levels in both E- and H-planes. Additionally, there is an overall increment in directivity with peak measured directivity up to 24.8 dBi and improvement in aperture efficiency of about 35% to 72% in the frequency range from 10–18 GHz. The total weight of the proposed antenna is about 345.37 g, which is significantly light weight. Moreover, it is a low cost and raid manufacturing solution using 3D printing technology.


Author(s):  
Francesco Tamburrino ◽  
Serena Graziosi ◽  
Monica Bordegoni

This review focuses on the design process of additively manufactured mesoscale lattice structures (MSLSs). They are arrays of three-dimensional (3D) printed trussed unit cells, whose dimensions span from 0.1 to 10.0 mm. This study intends to detail the phases of the MSLSs design process (with a particular focus on MSLSs whose unit cells are made up of a network of struts and nodes), proposing an integrated and holistic view of it, which is currently lacking in the literature. It aims at guiding designers' decisions with respect to the settled functional requirements and the manufacturing constraints. It also aims to provide an overview for software developers and researchers concerning the design approaches and strategies currently available. A further objective of this review is to stimulate researchers in exploring new MSLSs functionalities, consciously considering the impact of each design phase on the whole process, and on the manufactured product.


Author(s):  
Paul F. Egan

Abstract There is great potential for using 3D printed designs fabricated via additive manufacturing processes for diverse biomedical applications. 3D printing offers capabilities for customizing designs for each new fabrication that could leverage automated design processes for personalized patient care, but there are challenges in developing accurate and efficient assessment methods. Here, we conduct a sensitivity analysis for a biological growth simulation for evaluating 3D printed lattices for regenerating bone and then use these simulations to identify performance trends. Four design topologies were compared by generating varied unit cells. Biological growth was modeled in a voxel environment by simulating the advancement of a tissue front by calculating its local curvature. Designs were generated with properties suitable for bone tissue engineering, namely 50% porosity and microscale pores. The sensitivity analysis determined trade-offs between prediction consistency and computation time, suggesting calculating curvature within a radius of 7.5 voxels is sufficient for most cases. Topologies were compared in bulk with design variations. All topologies had similar tissue growth rates for a given surface-volume ratio, but with differing unit cell sizes. These findings inform future optimization for selecting unit cells based on volume requirements and other criteria, such as mechanical stiffness. A fitted analytical relationship predicted tissue growth rate based on a design’s surface-volume ratio, which enables design evaluation without computationally expensive simulations. Lattices were 3D printed with biocompatible materials as proof-of-concepts, demonstrating the feasibility of the approach for future computational design methods for personalized medicine.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


2019 ◽  
Vol 24 (2) ◽  
pp. 254-270 ◽  
Author(s):  
Luke Heemsbergen ◽  
Angela Daly ◽  
Jiajie Lu ◽  
Thomas Birtchnell

This article outlines preliminary findings from a futures forecasting exercise where participants in Shenzhen and Singapore considered the socio-technological construction of 3D printing in terms of work and social change. We offered participants ideal political-economic futures across local–global knowledge and capital–commons dimensions, and then had them backcast the contextual waypoints across markets, culture, policy, law and technology dimensions that help guide towards each future. Their discussion identified various contextually sensitive points, but also tended to dismiss the farthest reaches of each proposed ideal, often reverting to familiar contextual signifiers. Here, we offer discussion on how participants saw culture and industry shaping futures for pertinent political economic concerns in the twenty-first century.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 125
Author(s):  
Martino Colonna ◽  
Benno Zingerle ◽  
Maria Federica Parisi ◽  
Claudio Gioia ◽  
Alessandro Speranzoni ◽  
...  

The optimization of sport equipment parts requires considerable time and high costs due to the high complexity of the development process. For this reason, we have developed a novel approach to decrease the cost and time for the optimization of the design, which consists of producing a first prototype by 3D printing, applying the forces that normally acts during the sport activity using a test bench, and then measuring the local deformations using 3D digital image correlation (DIC). The design parameters are then modified by topological optimization and then DIC is performed again on the new 3D-printed modified part. The DIC analysis of 3D-printed parts has shown a good agreement with that of the injection-molded ones. The deformation measured with DIC are also well correlated with those provided by finite element method (FEM) analysis, and therefore DIC analysis proves to be a powerful tool to validate FEM models.


2021 ◽  
pp. 004005992110101
Author(s):  
A. Chloe Simpson ◽  
Andrea Ruth Taliaferro

While assistive technology is often suggested as a way to increase, maintain, or improve functional ability for individuals with disabilities within physical activity (PA) settings, cost and availability of such items are often noted as barriers. In recent years, 3D printing has become available to the general public through the adoption of 3D printers in schools, libraries, and universities. Through individual design and rapid prototyping, 3D printing can support physical educators in accommodating student need for assistive technology through a multitude of modification possibilities. This article will highlight the capacity for 3D printed assistive technology within educational settings, and will illustrate how teachers, APE specialists, and other related service personnel can utilize this technology to support student success in PE and PA settings. This article will also assist practitioners with locating, uploading, and utilizing existing collections of 3D assistive technology models from open-source websites, such as Thingiverse.


Sign in / Sign up

Export Citation Format

Share Document