A Class of Different Fractional-Order Chaotic (Hyperchaotic) Complex Duffing-Van Der Pol Models and Their Circuits Implementations

Author(s):  
Gamal Mahmoud ◽  
Tarek Abed-Elhameed ◽  
Motaz Elbadry

Abstract In this paper, we introduce three versions of fractional-order chaotic (or hyperchaotic) complex Duffing-van der Pol models. The dynamics of these models including their fixed points and their stability is investigated. Using the predictor-corrector method and Lyapunov exponents we calculate numerically the intervals of their parameters at which chaotic, hyperchaotic solutions and solutions that approach fixed points exist. These models appear in several applications in physics and engineering, e.g., viscoelastic beam and electronic circuits. The electronic circuits of these models with different fractional-order are proposed. We determine the approximate transfer functions for novel values of fractional-order and find the equivalent tree shape model (TSM). This TSM is used to build circuits simulations of our models}. A good agreement is found between both numerical and simulations results. Other circuits diagrams can be similarly designed for other fractional-order models.

Author(s):  
Iqbal M. Batiha ◽  
Ramzi B. Albadarneh ◽  
Shaher Momani ◽  
Iqbal H. Jebril

This paper proposes fractional-order systems for Hopfield Neural Network (HNN). The so-called Predictor–Corrector Adams–Bashforth–Moulton Method (PCABMM) has been implemented for solving such systems. Graphical comparisons between the PCABMM and the Runge–Kutta Method (RKM) solutions for the classical HNN reveal that the proposed technique is one of the powerful tools for handling these systems. To determine all Lyapunov exponents for them, the Benettin–Wolf algorithm has been involved in the PCABMM. Based on such algorithm, the Lyapunov exponents as a function of a given parameter and as another function of the fractional-order have been described, the intermittent chaos for these systems has been explored. A new result related to the Mittag–Leffler stability of some nonlinear Fractional-order Hopfield Neural Network (FoHNN) systems has been shown. Besides, the description and the dynamic analysis of those phenomena have been discussed and verified theoretically and numerically via illustrating the phase portraits and the Lyapunov exponents’ diagrams.


2013 ◽  
Vol 23 (02) ◽  
pp. 1350030 ◽  
Author(s):  
SHIU-PING WANG ◽  
SENG-KIN LAO ◽  
HSIEN-KENG CHEN ◽  
JUHN-HORNG CHEN ◽  
SHIH-YAO CHEN

In recent years, there has been expanding research on the applications of fractional calculus to the areas of signal processing, modeling and controls. Analog circuit implementation of chaotic systems is used in studying nonlinear dynamical phenomena, which is also applied in realizing the controller development. In this paper, chain fractance and tree fractance circuits are constructed to realize the fractional-order Chen–Lee system. The results are in good agreement with those obtained from numerical simulation. This study shows that not only is this system related to gyro motion but can also be applied to electronic circuits for secure communication.


Fractals ◽  
2021 ◽  
Author(s):  
ANWAR ZEB ◽  
SUNIL KUMAR ◽  
TAREQ SAEED

The social habit of smoking has affected the whole world in a social manner. It is the main cause of diseases like cancers, asthma, bad breath, etc., and a source of spreading of infectious diseases like COVID-19. This work is related to an existing smoking model with relapse habit converted in fractional order. First, formulation of fractional-order smoking model is presented and then the dynamics of proposed problem is analyzed. Fixed-point theory via Banach contraction and Schauder theorems is used to derive the existence and uniqueness of the model. At last, the adaptive predictor–corrector algorithm and Runge–Kutta fourth-order (RK4) strategy are used to perform simulation. To bolster the validity of the theoretical results, a set of numerical simulations are performed. A good agreement between hypothetical and numerical results is demonstrated via numerical simulations using MATLAB software.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ndolane Sene

This paper presents a modified chaotic system under the fractional operator with singularity. The aim of the present subject will be to focus on the influence of the new model’s parameters and its fractional order using the bifurcation diagrams and the Lyapunov exponents. The new fractional model will generate chaotic behaviors. The Lyapunov exponents’ theories in fractional context will be used for the characterization of the chaotic behaviors. In a fractional context, the phase portraits will be obtained with a predictor-corrector numerical scheme method. The details of the numerical scheme will be presented in this paper. The numerical scheme will be used to analyze all the properties addressed in this present paper. The Matignon criterion will also play a fundamental role in the local stability of the presented model’s equilibrium points. We will find a threshold under which the stability will be removed and the chaotic and hyperchaotic behaviors will be generated. An adaptative control will be proposed to correct the instability of the equilibrium points of the model. Sensitive to the initial conditions, we will analyze the influence of the initial conditions on our fractional chaotic system. The coexisting attractors will also be provided for illustrations of the influence of the initial conditions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ndolane Sene

This paper is presented on the theory and applications of the fractional-order chaotic system described by the Caputo fractional derivative. Considering the new fractional model, it is important to establish the presence or absence of chaotic behaviors. The Lyapunov exponents in the fractional context will be our fundamental tool to arrive at our conclusions. The variations of the model’s parameters will generate chaotic behavior, in general, which will be established using the Lyapunov exponents and bifurcation diagrams. For the system’s phase portrait, we will present and apply an interesting fractional numerical discretization. For confirmation of the results provided in this paper, the circuit schematic is drawn and simulated. As it will be observed, the results obtained after the simulation of the numerical scheme and with the Multisim are in good agreement.


2019 ◽  
Vol 10 (1) ◽  
pp. 54 ◽  
Author(s):  
Roman Sotner ◽  
Ondrej Domansky ◽  
Jan Jerabek ◽  
Norbert Herencsar ◽  
Jiri Petrzela ◽  
...  

This paper targets on the design and analysis of specific types of transfer functions obtained by the summing operation of integer-order and fractional-order two-port responses. Various operations provided by fractional-order, two-terminal devices have been studied recently. However, this topic needs to be further studied, and the topologies need to be analyzed in order to extend the state of the art. The studied topology utilizes the passive solution of a constant-phase element (with order equal to 0.5) implemented by parallel resistor–capacitor circuit (RC) sections operating as a fractional-order two-port. The integer-order part is implemented by operational amplifier-based lossless integrators and differentiators in branches with electronically adjustable gain, useful for time constant tuning. Four possible cases of the fractional-order and integer-order two-port interconnections are analyzed analytically, by PSpice simulations and also experimentally in the frequency range between 10 Hz and 1 MHz. Standard discrete active components are used in this design for laboratory verification. Practical recommendations for construction and also particular solutions overcoming possible issues with instability and DC offsets are also given. Experimental and simulated results are in good agreement with theory.


2018 ◽  
Vol 28 (05) ◽  
pp. 1850067 ◽  
Author(s):  
Marius-F. Danca ◽  
Nikolay Kuznetsov

In this paper, the Benettin–Wolf algorithm to determine all Lyapunov exponents for a class of fractional-order systems modeled by Caputo’s derivative and the corresponding Matlab code are presented. First, it is proved that the considered class of fractional-order systems admits the necessary variational system necessary to find the Lyapunov exponents. The underlying numerical method to solve the extended system of fractional order, composed of the initial value problem and the variational system, is the predictor-corrector Adams–Bashforth–Moulton for fractional differential equations. The Matlab program prints and plots the Lyapunov exponents as function of time. Also, the programs to obtain Lyapunov exponents as function of the bifurcation parameter and as function of the fractional order are described. The Matlab program for Lyapunov exponents is developed from an existing Matlab program for Lyapunov exponents of integer order. To decrease the computing time, a fast Matlab program which implements the Adams–Bashforth–Moulton method, is utilized. Four representative examples are considered.


2018 ◽  
Vol 27 (11) ◽  
pp. 1850170 ◽  
Author(s):  
Georgia Tsirimokou ◽  
Aslihan Kartci ◽  
Jaroslav Koton ◽  
Norbert Herencsar ◽  
Costas Psychalinos

Due to the absence of commercially available fractional-order capacitors and inductors, their implementation can be performed using fractional-order differentiators and integrators, respectively, combined with a voltage-to-current conversion stage. The transfer function of fractional-order differentiators and integrators can be approximated through the utilization of appropriate integer-order transfer functions. In order to achieve that, the Continued Fraction Expansion as well as the Oustaloup’s approximations can be utilized. The accuracy, in terms of magnitude and phase response, of transfer functions of differentiators/integrators derived through the employment of the aforementioned approximations, is very important factor for achieving high performance approximation of the fractional-order elements. A comparative study of the accuracy offered by the Continued Fraction Expansion and the Oustaloup’s approximation is performed in this paper. As a next step, the corresponding implementations of the emulators of the fractional-order elements, derived using fundamental active cells such as operational amplifiers, operational transconductance amplifiers, current conveyors, and current feedback operational amplifiers realized in commercially available discrete-component IC form, are compared in terms of the most important performance characteristics. The most suitable of them are further compared using the OrCAD PSpice software.


Sign in / Sign up

Export Citation Format

Share Document