Power Enhancement of WEC Array via Wave Runup in Channel

Author(s):  
Zhi Tay

Abstract When waves pass through a channel, wave elevation is observed to increase, a phenomenon known as wave runup. Attempts are made to utilize the wave runup along a channel supported on a floating platform to enhance the energy generation from the array of point absorber WECs. Such floating platforms could be integrated into the floating breakwater, floating pier or other floating platforms utilized as floating cities for efficient ocean space utilization. The channel is created by modelling two vertical walls supported on a floating platform with WECs deployed in the channel. The performance of the wave farm in terms of energy generation and interaction factor are assessed. The paper investigates the effect of channel widths and depths on the power absorption of the arrays. A three-stepped floating platform with varying depths along the channel is then studied to obtain optimal depths along the channel where the highest energy is harvested. Thereafter, three arrays of WECs deployed in a larger three-stepped channel floating platform are considered and the effectiveness of such configuration in harvesting energy is assessed. The wave elevation surrounding the wave farm is presented to show the effect the wave runup has on energy generation. The results show that the energy generation of wave energy converters when the arrays are placed in a three-stepped channel floating platform could be increased significantly. A q-factor above 1.0 could be achieved for wave periods greater than 6s and the array can generate greater energy for omnidirectional waves.

Author(s):  
Simone Di Carlo ◽  
Alessandro Fontanella ◽  
Alan Facchinetti ◽  
Sara Muggiasca ◽  
Federico Taruffi ◽  
...  

Abstract The scope of this work is to investigate if and how it is possible to estimate the incident wave elevation on a floating wind turbine, with the purpose of improved control strategies. A Kalman based algorithm is proposed, which receives as input the rigid motions of the floater and estimates the wave elevation hitting the floating platform. The structure of the observer is described and the estimator is tested numerically on the OC3-Hywind platform coupled with the 5-MW reference wind turbine from NREL. Limitations to the estimation procedure are discussed. Finally the algorithm is tested on experimental data coming from a wave basin experimental campaign on a floating wind turbine model. The algorithm still needs improvements, but results are encouraging in the development of this technology.


2020 ◽  
Vol 8 (8) ◽  
pp. 587
Author(s):  
Susheelkumar C. Subramanian ◽  
Michaela Dye ◽  
Sangram Redkar

The occurrence of parametric resonance due to the time varying behavior of ocean waves could lead to catastrophic damages to offshore structures. A stable structure that could withstand the wave perturbations is quintessential to operate in such a harsh environment. In this work, the authors detail the relevance of a Suction Stabilized Float (SSF) or a Suction Stabilized Floating platform towards such an application. A generic design of a symmetrically shaped float structure along with its inherent stabilization behavior is discussed. Furthermore, the authors extend their prior research on this topic towards modelling the dynamics of SSF and perform stability analysis. The authors demonstrate the dynamical characteristics of SSF analytically using Floquet theory and Normal Forms technique, in this work. Additionally, the simulation results are verified and validated with the numerical methods.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1504
Author(s):  
Aitor Fernández-Jiménez ◽  
Daniel Fernández-de la Cruz ◽  
Jesús Ruiz-Torres ◽  
Jose Luis Perrino-Blanco ◽  
Raúl Jimeno-Almeida

The implantation of floating platforms for the generation of electricity from tidal currents is possible due to the development of new hydrokinetic microturbines. This article presents an analysis of the situation in which the exploitation of tidal currents is nowadays, the state of art of the existing technologies and the principal projects that are currently underway. In addition, it focuses on the different aspects and criteria to consider for building one of these plants. Finally, an installation by floating platform is proposed to supply electricity to a charging station for electric vehicles near the Nalon river (Spain) with a description of it and an analysis of feasibility.


2012 ◽  
Vol 253-255 ◽  
pp. 670-673
Author(s):  
Zhi Gang Bai ◽  
Lian Bo Shi

Wave energy is recognized as an important pollution-free source of power generation in the world. So in last decades wide variety of wave energy converters (WEC) has been developed, meanwhile, more economical and reliable technologies were also under process. It is very vital to decide about the location of the WECs in a wave farm, which can increase the electricity generation [1]. To get the optimum power output, it is necessary to evaluate the layout of WECs by computer simulations, such as SWAN, MIKE21, SWASH, etc [2]. Among them, MIKE21 is a professional modeling and simulation engineering software, and is well known as a tool that provides a design environment for engineering, coastal management and planning applications. So, in this paper, MIKE21 BW was introduced briefly and applied to simulate and calculate the wave parameters of the Chengshantou wave farm, then, the layout of a new-type (Water-filled raft) WECs in the Chengshantou wave farm which can generate higher possible power output was investigated and the optimum scheme was achieved finally.


A basic field is defined in the realm of a mathematical modeling platform that is based on a collection of floating platforms and an embedding platform. Each floating platform is represented by a quaternionic separable Hilbert space. The embedding platform is a non-separable Hilbert space. A basic field is a continuum eigenspace of an operator that resides in the non-separable embedding Hilbert space. The continuum can be described by a quaternionic function, and its behavior is described by quaternionic differential calculus. The separable Hilbert spaces contain the point-like artifacts that trigger the basic field. The floating platforms possess symmetry, which in combination with the background platform generates the sources of symmetry related fields.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1390
Author(s):  
Sung Youn Boo ◽  
Steffen Allan Shelley

This paper presents the design and analysis of a mooring buoy and its mooring systems to moor a floating platform mounting an arrayed Wave Energy Converters (WECs). The mooring buoy allows the WEC platform to weathervane around the mooring buoy freely by the prevailing environment directions, which enables consistent power generation. The WEC platform is connected to the buoy with synthetic hawsers, while station-keeping of the buoy is maintained with catenary mooring lines of chains tied to the buoy keel. The buoy also accommodates a power cable to transfer the electricity from the WEC platform to the shore. The WEC platform is designed to produce a total of 1.0 MW with multiple WECs installed in an array. Fully coupled time-domain analyses are conducted under the site sea states, including extreme 50 y and survival 100 y conditions. The buoy motions, mooring tensions and other design parameters are evaluated. Strength and fatigue designs of the mooring systems are validated with requirements according to industry standards. Global and local structural designs of the mooring buoy are carried out and confirm the design compliances.


Author(s):  
Ye Lu ◽  
Haicheng Zhang ◽  
Yuchao Chen ◽  
Qijia Shi ◽  
Ye Zhou

A novel connection for super-scale modularized floating platforms is put forward for the purposes of suppressing the oscillation of the platform. The platform consists of multiple blocks where semi-submergible modules are flexibly connected with upper decks by elastic cushions. For the connection between adjacent blocks, neighboring decks are linked by rigid hinges and neighboring floating modules are connected by flexible linkages. Based on the linear wave theory and rigid-module-flexible-connection (RMFC) model, the governing equation of motions for the modularized floating platform is derived by using a network modeling method. In numerical case studies, a five-block platform is investigated. Taking combined responses of the platform and the connector loads as an objective function, the stiffness configuration of the connection and the elastic cushion is optimally determined by using a genetic algorithm. At last, the short-term extreme responses of the floating platform with the optimum setting of the stiffness configuration of the connection are analyzed.


Author(s):  
Matt Folley ◽  
Trevor Whittaker

The development of wave energy for utility-scale electricity production requires an understanding of how wave energy converters will interact with each other when part of a wave farm. Without this understanding it is difficult to calculate the energy yield from a wave farm and consequently the optimal wave farm layout and configuration cannot be determined. In addition, the uncertainty in a wave farm’s energy yield will increase the cost of finance for the project, which ultimately increases the cost of energy. Numerical modelling of wave energy converter arrays, based on potential flow, has provided some initial indications of the strength of array interactions and optimal array configurations; however, there has been limited validation of these numerical models. Moreover, the cross-validation that has been completed has been for relatively small arrays of wave energy converters. To provide some validation for large array interactions wave basin testing of three different configurations of up to 24 wave energy converters has been completed. All tests used polychromatic (irregular) sea-states, with a range of long-crested and short-crested seas, to provide validation in realistic conditions. The physical model array interactions are compared to those predicted by a numerical model and the suitability of the numerical and physical models analysed. The results are analysed at three different levels and all provide support for the cross-validation of the two models. The differences between the physical and numerical model are also identified and the implications for improving the modelling discussed.


1987 ◽  
Vol 109 (2) ◽  
pp. 179-185 ◽  
Author(s):  
M.-C. Fang ◽  
C. H. Kim

This paper presents a frequency domain method for predicting the relative wave elevation due to the hydrodynamic interaction between two floating structures in the beam waves. The strip method has been found to be a practically useful technique to analyze the hydrodynamically coupled motions of two parallel structures in waves. The two-dimensional procedure which is an integral equation method is therefore used in this paper. The present study uses the linearized resultant pressure including the interaction effect to calculate the wave elevation. Both diffraction and radiation cases are considered. The relative wave elevations at each hull are investigated and the wave elevation amplitudes along the sea surface between two structures are also analyzed. It was found that some significant waves occur at the coupled resonance of the body motion. Therefore, the water shipping must be considered as an important factor for the safety of cargo transfer problem. The results shown in the paper may be regarded as analytically reasonable from the viewpoint of energy conservation.


Author(s):  
Jaime Hui Choo Tan ◽  
Allan Magee ◽  
Jang Whan Kim ◽  
Yih Jeng Teng ◽  
NorBahrain Ahmad Zukni

The potential of vortex induced motion (VIM) in multi-column floating platforms such as semi-submersibles and tension leg platforms (TLPs) is well-acknowledged although the industry guidelines for design for VIM are not comprehensive and more research effort is required. Significant VIM in multi-column floating platforms will affect the fatigue life of the steel catenary risers and must be quantified and sometimes reduced. Industry-standard design tools used for drag estimation based on model tests of fixed structures may not accurately reflect the effects of drag augmentation due to VIM. Model tests and Computational Fluid Dynamics (CFD) analysis are feasible methods to investigate VIM, with the latter being more resource-efficient, provided sufficient benchmarking has been carried out to ensure reliable results. Subsequent to the model tests and preliminary Computational Fluid Dynamics (CFD) simulations done for a multi-column floating platform [1, 2], further CFD analyses for the VIM of the floating platform have been carried out using improved simulation techniques with a commercial software. Good agreement between model test results and CFD calculations for VIM of a multi-column floating platform is observed. Sensitivity of CFD results to the modeling assumptions such as mesh size and density, time-step size and different turbulence models is presented.


Sign in / Sign up

Export Citation Format

Share Document