World’s First LM5000 to LM6000 Cogeneration Plant Repowering

Author(s):  
Michael T. McCarrick ◽  
Robert K. Rosencrance

With the introduction of GE’s latest and most efficient gas turbine, the LM6000 in 1992, and the end of production of GE’s LM5000 gas turbine in 1997, the concept of repowering aging LM5000 gas turbine powered cogeneration plants with LM6000 gas turbines was an idea that most LM5000 owners and operators dreamed about. The LM6000 is an ideal replacement for the LM5000 as they both have nearly the same mass flow and exhaust gas temperature (critical for Heat Recovery Steam Generator (HRSG) compatibility), are about the same physical weight and dimensions, and can be operated in the same power range. Also, as the LM6000 is a current production model, it has more readily available spare gas turbines and turbine parts, has a much improved heat rate, lower emissions level, and has an option (SPRINT), for added power. In December 1999, the UAE Oildale Energy Facility became the first plant to operate with a newly installed LM6000 in its former LM5000 package. (This March the second LM5000 to LM6000 repowering was completed for Calpine Corporation at their Greenleaf #1 Cogeneration Plant in Yuba City, CA.) Energy Services, Inc., GE’s authorized LM6000 repowering OEM, designed, engineered and project managed the repowering. This paper will present the reasons UAE decided to repower; discuss the technical challenges encountered with, and modifications made to, the GEC ELM-150 cogeneration plant to accommodate the LM6000; review the schedule; and provide the economic benefits of the improved heat rate and reliability of the LM6000.

Author(s):  
Tosin Onabanjo ◽  
Giuseppina Di Lorenzo ◽  
Theoklis Nikolaidis ◽  
Yinka Somorin

The recent advances for flexible fuel operation and the integration of biofuels and blends in gas turbines raise concern on engine health and quality. One of such potential threats involves the contamination and the growth of microorganisms in fuels and fuel systems with consequential effect on engine performance and health. In the past, the effects of microbial growth in fuels have been qualitatively described; however their effects in gas turbines have not necessarily been quantified. In this paper, the effects of fuel deterioration are examined on a simulated aero-derivative gas turbine. A diesel-type fuel comprising of thirteen (13) hydrocarbon fractions was formulated and degraded with Bio-fAEG, a bio fouling assessment model that defines degraded fuels for performance simulation and analysis, predicts biodegradation rates as well as calculates the amount of water required to initiate degradation under aerobic conditions. The degraded fuels were integrated in the fuel library of Turbomatch (v2.0) and a twin shaft gas turbine was modeled for fuel performance analysis. The results indicate a significant loss in performance with reduced thermal efficiency of 1% and 10.4% and increased heat rate of 1% and 11.6% for the use of 1% and 10% degraded fuels respectively. Also parameters such as exhaust gas temperature and mass flow deviated from the baseline data indicating potential impact on engine health. Therefore, for reliable and safe operation, it is important to ensure engines run on good quality of fuel. This computational study provides insights on fuel deterioration in gas turbines and how it affects engine health.


Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


Author(s):  
Jiao Liu ◽  
Jinfu Liu ◽  
Daren Yu ◽  
Zhongqi Wang ◽  
Weizhong Yan ◽  
...  

Failure of hot components in gas turbines often causes catastrophic results. Early fault detection can prevent serious incidents and improve the availability. A novel early fault detection method of hot components is proposed in this article. Exhaust gas temperature is usually used as the indicator to detect the fault in the hot components, which is measured by several exhaust thermocouples with uniform distribution at the turbine exhaust section. The healthy hot components cause uniform exhaust gas temperature (EGT) profile, whereas the hot component faults could cause the uneven EGT profile. However, the temperature differences between different thermocouple readings are also affected by different ambient and operating conditions, and it sometimes has a greater influence on EGT than the faults. In this article, an accurate EGT model is presented to eliminate the influence of different ambient and operating conditions on EGT. Especially, the EGT profile swirl under different ambient and operating conditions is also included by considering the information of the thermocouples’ spatial correlations and the EGT profile swirl angle. Based on the developed EGT model, the detection performance of early fault detection of hot components in gas turbine is improved. The accuracy and effectiveness of the developed early fault detection method are evaluated by the real-world gas turbine data.


Author(s):  
Chuck Kohlenberger

The temperature of the air entering a gas turbine prime mover has a dramatic effect on its performance, including output, heat rate, and exhaust gas temperature (EGT). These variations are easily observed in actual operation and by reference to generic gas turbine (GT) performance curves. The gross capacity increase of a GT operating at 40F (8C) inlet compared to operation at 102F (70C) is 28%. The gross reduction in heat rate for this 62F (16.7C) differential is 6%, and the exhaust gas temperature is reduced 5%. Since the overall mass flow through the GT is increased through the cooling process, the added energy available in the heat recovery steam generator (HRSG), is increased 8% The significant improvements in GT output and efficiency which can be achieved by maintaining lower inlet air temperatures encourage the manufacturer, systems engineer, owner, and operator of GT facilities to consider seriously the implementation of a gas turbine inlet air cooling (GTIAC) system. GTIAC systems have proven to produce some very excellent economic paybacks due to increased power output, EG mass flow, and reduced heat rates. Generic gross performance factors are plotted (See Figure 1) against inlet air temperature compared to International Standards Organization (ISO) conditions.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 476
Author(s):  
Antonio Rovira ◽  
Rubén Abbas ◽  
Marta Muñoz ◽  
Andrés Sebastián

The main objective of this paper is to present and analyze an innovative configuration of integrated solar combined cycle (ISCC). As novelties, the plant includes a recuperative gas turbine and the conventional bottoming Rankine cycle is replaced by a recently developed double recuperative double expansion (DRDE) cycle. The configuration results in a fuel saving in the combustion chamber at the expense of a decreased exhaust gas temperature, which is just adequate to feed the DRDE cycle that uses propane as the working fluid. The solar contribution comes from a solar field of parabolic trough collectors, with oil as the heat transfer fluid. The optimum integration point for the solar contribution is addressed. The performance of the proposed ISCC-R-DRDE design conditions and off-design operation was assessed (daily and yearly) at two different locations. All results were compared to those obtained under the same conditions by a conventional ISCC, as well as similar configurations without solar integration. The proposed configuration obtains a lower heat rate on a yearly basis in the studied locations and lower levelized cost of energy (LCOE) than that of the ISCC, which indicates that such a configuration could become a promising technology.


Author(s):  
Hafiz M Hassan ◽  
Adeel Javed ◽  
Asif H Khoja ◽  
Majid Ali ◽  
Muhammad B Sajid

A clear understanding of the flow characteristics in the older generation of industrial gas turbines operating with silo combustors is important for potential upgrades. Non-uniformities in the form of circumferential and radial variations in internal flow properties can have a significant impact on the gas turbine stage performance and durability. This paper presents a comprehensive study of the underlying internal flow features involved in the advent of non-uniformities from twin-silo combustors and their propagation through a single axial turbine stage of the Siemens v94.2 industrial gas turbine. Results indicate the formation of strong vortical structures alongside large temperature, pressure, velocity, and flow angle deviations that are mostly located in the top and bottom sections of the turbine stage caused by the excessive flow turning in the upstream tandem silo combustors. A favorable validation of the simulated exhaust gas temperature (EGT) profile is also achieved via comparison with the measured data. A drop in isentropic efficiency and power output equivalent to 2.28% points and 2.1 MW, respectively is observed at baseload compared to an ideal straight hot gas path reference case. Furthermore, the analysis of internal flow topography identifies the underperforming turbine blading due to the upstream non-uniformities. The findings not only have implications for the turbine aerothermodynamic design, but also the combustor layout from a repowering perspective.


Author(s):  
Kazuo Takeya ◽  
Hajime Yasui

In 1978, the Japanese government started a national project for energy conservation called the Moonlight Project. The Engineering Research Association for Advanced Gas Turbines was selected to research and develop an advanced gas turbine for this project. The development stages were planned as follows: First, the development of a reheat gas turbine for a pilot plant (AGTJ-100A), and second, a prototype plant (AGTJ-100B). The AGTJ-100A has been undergoing performance tests since 1984 at the Sodegaura Power Station of the Tokyo Electric Power Co., Inc. (TEPCO). The inlet gas temperature of the high pressure turbine (HPT) of the AGTJ-100A is 1573K, while that of the AGTJ-100B is 100K higher. Therefore, various advanced technologies have to be applied to the AGTJ-100B HPT. Ceramic coating on the HPT blades is the most desirable of these technologies. In this paper, the present situation of development, as well as future R & D plans for ceramic coating, is taken into consideration. Steam blade cooling is applied for the IGSC.


Author(s):  
Y. Zhu ◽  
H. Yamada ◽  
S. Hayashi

A diode-laser absorption system having the potential of simultaneous determination of NO and NO2 concentrations in the exhaust jets from gas turbines has been being developed. The sensitivities of the detection units at a typical exhaust gas temperature of 800 K were estimated as 30 ppmv-m and 3.7 ppmv-m for NO and NO2, respectively. Experiments using simulated exhaust gas flows have shown that CO2 do not have any interference with the NO and NO2 measurements. The detection limits in ppm of the system were considerably lowered by using a multi-pass optical system. A pair of off-axis parabola mirrors was useful to prevent the laser beam from straying from the detection area of the sensor due to the beam steering in the exhaust gas. Furthermore, the multi-path optical duct fabricated with 14 mirrors on the inner wall was effective in the measurement of NO and NO2 in the exhaust gas from gas turbines.


Author(s):  
SS Talebi ◽  
AM Tousi ◽  
A Madadi ◽  
M Kiaee

Recently, the utilization of micro gas turbines in smart grids are rising that makes the part-load operation principal situation of the engine service. This leads to faster life consumption that increases the importance of the diagnostics process. Gas path analysis is an effective method for gas turbine diagnostics. Complex dynamics of gas turbine induces challenging conditions to perform applicable gas path analysis. This study aims to facilitate MGT gas path diagnostics through reducing the number of monitoring parameters and preparation a pattern for engine level and component level health assessment in both full and part load operation of a recuperated micro gas turbine. To attain this goal a model is proposed to simulate MGT off-design performance which is validated against experimental data in healthy and degraded operation modes. Fouling in compressor, turbine and recuperator and erosion in compressor and turbine as the most common degradations in the gas turbine are considered. The fault simulation is performed by changing the health parameters of gas path components. According to the result investigation, a matrix comprises deviation contours of four parameters, Power, fuel flow, compressor discharge pressure, and exhaust gas temperature is presented and analyzed. The analysis shows that monitoring these parameters makes it possible to perform engine level and component level diagnostics through evaluating a binary code (generated by mentioned parameter variations) against the fault effects pattern in different load fractions and fault severities. The simulation also showed that the most power drop occurred under the compressor fouling by about 8.7% while the most reduction in thermal efficiency is observed under recuperator fouling by about 7.84%. Furthermore, the investigation showed the maximum decrease in the surge margin induced by the compressor fouling during the lower part-load operation by about 45.7% while in the higher loads created by the turbine fouling by about 14%.


Sign in / Sign up

Export Citation Format

Share Document