Equivalent Availability Measurement for Combined-Cycle Power Plants: A New Approach

Author(s):  
Dieter Lampert ◽  
Robert F. Steele ◽  
Markus Rosenfelder ◽  
Salvatore DellaVilla

The Equivalent Availability Factor (EAF) is the most important RAM characteristic in statistics for benchmarks and guarantees for power plants. It represents an energy ratio of the amount available in a period and the theoretical maximum. Representing the impact of scheduled and forced outages of components along with any deratings, a large number of parameters are involved from design, operation to the environment. In 1993, ABB and SPS commenced a cooperation on the fields of data procurement and recording. ABB brought large experience as a power plant supplier, SPS its competence as the leading firm specialized on RAM data service for the power industry worldwide. In May 2000 ALSTOM affiliated the whole power generation division of ABB. ALSTOM and SPS agreed to complete their periodic reports on time based reliability and availability data with EAF data. As the available energy must be calculated from the attributes of its components — in contrast to the effective produced energy that can be measured — the question of accuracy arises. Starting from the definition formula set as standard by ISO 3977/9 (former ANSI/IEEE 762), different methods have been considered to find the most suitable approach. The accuracy of comparisons of plants of different designs and operation modes and the ability to interpret the results is a measure for the suitability of the model chosen. Finally, some recommendations to handle and apply the EAF in the power plant business are given.

Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and the same technology as defined by reliability, availability, and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more base-loaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and same technology as defined by reliability, availability and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more baseloaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


2011 ◽  
Vol 17 (4) ◽  
pp. 437-449 ◽  
Author(s):  
Ali Jozi ◽  
Alsadat Pouriyeh

Growing importance of environmental issues at global and regional levels including pollution of water, air etc. as well as the outcomes such as global warming and climate change has led to being considered environmental aspects as effective factors for power generation. Study ahead, aims at examination of risks resulting from activities of Yazd Combined Cycle Power Plant located in Iran. Method applied in the research is analytical hierarchy process. After identification of factors causing risk, the analytical hierarchy structure of the power plant risks were designed and weight of the criteria and sub-criteria were calculated by intensity probability product using Eigenvector Method and EXPERT CHOICE Software as well. Results indicate that in technological, health-safety, biophysical and socio economic sections of the power plant, factors influenced by the power plant activities like fire and explosion, hearing loss, quantity of groundwater, power generation are among the most important factors causing risk in the power plant. The drop in underground water levels is the most important natural consequence influenced on Yazd Combined Cycle Power Plant.


Author(s):  
S. Can Gu¨len

Increasing the thermal efficiency of fossil fuel fired power plants in general and the gas turbine power plant in particular is of extreme importance. In the face of diminishing natural resources and increasing carbon emissions that lead to a heightened greenhouse effect and greater concerns over global warming, thermal efficiency is more critical today than ever before. In the science of thermodynamics, the best yardstick for a power generation system’s performance is the Carnot efficiency — the ultimate efficiency limit, set by the second law, which can be achieved only by a perfect heat engine operating in a cycle. As a fact of nature this upper theoretical limit is out of reach, thus engineers usually set their eyes on more realistic goals. For the longest time, the key performance benchmark of a combined cycle (CC) power plant has been the 60% net electric efficiency. Land-based gas turbines based on the classic Brayton cycle with constant pressure heat addition represent the pinnacle of fossil fuel burning power generation engineering. Advances in the last few decades, mainly driven by the increase in cycle maximum temperatures, which in turn are made possible by technology breakthroughs in hot gas path materials, coating and cooling technologies, pushed the power plant efficiencies to nearly 40% in simple cycle and nearly 60% in combined cycle configurations. To surpass the limitations imposed by available materials and other design considerations and to facilitate a significant improvement in the thermal efficiency of advanced Brayton cycle gas turbine power plants necessitate a rethinking of the basic thermodynamic cycle. The current paper highlights the key thermodynamic considerations that make the constant volume heat addition a viable candidate in this respect. First using fundamental air-standard cycle formulas and then more realistic but simple models, potential efficiency improvement in simple and combined cycle configurations is investigated. Existing and past research activities are summarized to illustrate the technologies that can transform the basic thermodynamics into a reality via mechanically and economically feasible products.


Author(s):  
Frank Sander ◽  
Richard Carroni ◽  
Stefan Rofka ◽  
Eribert Benz

The rigorous reduction of greenhouse gas emissions in the upcoming decades is only achievable with contribution from the following strategies: production efficiency, demand reduction of energy and carbon dioxide (CO2) capture from fossil fueled power plants. Since fossil fueled power plants contribute largely to the overall global greenhouse gas emissions (> 25% [1]), it is worthwhile to capture and store the produced CO2 from those power generation processes. For natural-gas-fired power plants, post-combustion CO2 capture is the most mature technology for low emissions power plants. The capture of CO2 is achieved by chemical absorption of CO2 from the exhaust gas of the power plant. Compared to coal fired power plants, an advantage of applying CO2 capture to a natural-gas-fired combined cycle power plant (CCPP) is that the reference cycle (without CO2 capture) achieves a high net efficiency. This far outweighs the drawback of the lower CO2 concentration in the exhaust. Flue Gas Recirculation (FGR) means that flue gas after the HRSG is partially cooled down and then fed back to the GT intake. In this context FGR is beneficial because the concentration of CO2 can be significantly increased, the volumetric flow to the CO2 capture unit will be reduced, and the overall performance of the CCPP with CO2 capture is increased. In this work the impact of FGR on both the Gas Turbine (GT) and the Combined Cycle Power Plant (CCPP) is investigated and analyzed. In addition, the impact of FGR for a CCPP with and without CO2 capture is investigated. The fraction of flue gas that is recirculated back to the GT, need further to be cooled, before it is mixed with ambient air. Sensitivity studies on flue gas recirculation ratio and temperature are conducted. Both parameters affect the GT with respect to change in composition of working fluid, the relative humidity at the compressor inlet, and the impact on overall performance on both GT and CCPP. The conditions at the inlet of the compressor also determine how the GT and water/steam cycle are impacted separately due to FGR. For the combustion system the air/fuel-ratio (AFR) is an important parameter to show the impact of FGR on the combustion process. The AFR indicates how close the combustion process operates to stoichiometric (or technical) limit for complete combustion. The lower the AFR, the closer operates the combustion process to the stoichiometric limit. Furthermore, the impact on existing operational limitations and the operational behavior in general are investigated and discussed in context of an operation concept for a GT with FGR.


Author(s):  
W. Peter Sarnacki ◽  
Richard Kimball ◽  
Barbara Fleck

The integration of micro turbine engines into the engineering programs offered at Maine Maritime Academy (MMA) has created a dynamic, hands-on approach to learning the theoretical and operational characteristics of a turbojet engine. Maine Maritime Academy is a fully accredited college of Engineering, Science and International Business located on the coast of Maine and has over 850 undergraduate students. The majority of the students are enrolled in one of five majors offered at the college in the Engineering Department. MMA already utilizes gas turbines and steam plants as part of the core engineering training with fully operational turbines and steam plant laboratories. As background, this paper will overview the unique hands-on nature of the engineering programs offered at the institution with a focus of implementation of a micro gas turbine trainer into all engineering majors taught at the college. The training demonstrates the effectiveness of a working gas turbine to translate theory into practical applications and real world conditions found in the operation of a combustion turbine. This paper presents the efforts of developing a combined cycle power plant for training engineers in the operation and performance of such a plant. Combined cycle power plants are common in the power industry due to their high thermal efficiencies. As gas turbines/electric power plants become implemented into marine applications, it is expected that combined cycle plants will follow. Maine Maritime Academy has a focus on training engineers for the marine and stationary power industry. The trainer described in this paper is intended to prepare engineers in the design and operation of this type of plant, as well as serve as a research platform for operational and technical study in plant performance. This work describes efforts to combine these laboratory resources into an operating combined cycle plant. Specifically, we present efforts to integrate a commercially available, 65 kW gas turbine generator system with our existing steam plant. The paper reviews the design and analysis of the system to produce a 78 kW power plant that approaches 35% thermal efficiency. The functional operation of the plant as a trainer is presented as the plant is designed to operate with the same basic functionality and control as a larger commercial plant.


Author(s):  
Rodney R. Gay

Traditionally optimization has been thought of as a technology to set power plant controllable parameters (i.e. gas turbine power levels, duct burner fuel flows, auxiliary boiler fuel flows or bypass/letdown flows) so as to maximize plant operations. However, there are additional applications of optimizer technology that may be even more beneficial than simply finding the best control settings for current operation. Most smaller, simpler power plants (such as a single gas turbine in combined cycle operation) perceive little need for on-line optimization, but in fact could benefit significantly from the application of optimizer technology. An optimizer must contain a mathematical model of the power plant performance and of the economic revenue and cost streams associated with the plant. This model can be exercised in the “what-if” mode to supply valuable on-line information to the plant operators. The following quantities can be calculated: Target Heat Rate Correction of Current Plant Operation to Guarantee Conditions Current Power Generation Capacity (Availability) Average Cost of a Megawatt Produced Cost of Last Megawatt Cost of Process Steam Produced Cost of Last Pound of Process Steam Heat Rate Increment Due to Load Change Prediction of Future Power Generation Capability (24 Hour Prediction) Prediction of Future Fuel Consumption (24 Hour Prediction) Impact of Equipment Operational Constraints Impact of Maintenance Actions Plant Budget Analysis Comparison of Various Operational Strategies Over Time Evaluation of Plant Upgrades The paper describes examples of optimizer applications other than the on-line computation of control setting that have provided benefit to plant operators. Actual plant data will be used to illustrate the examples.


Author(s):  
Rafael Guédez ◽  
José García ◽  
Antti Nuutinen ◽  
Giovanni Graziano ◽  
Justin Chiu ◽  
...  

Abstract In the pursuit of increasing their profitability, the design and operation of combined cycle power plants needs to be optimized for new liberalized markets with large penetration of renewables. A clear consequence of such renewable integration is the need for these plants for being more flexible in terms of ramping-up periods and higher part-load efficiencies. Flexibility becomes an even clearer need for combined heat and power plants to be more competitive, particularly when simultaneously following the market hourly price dynamics and varying demands for both the heat and the electricity markets. In this paper, three new plant layouts have been investigated by integrating different storage concepts and heat-pump units in key sections of a traditional plant layout. The study analyses the influence that market has on determining the optimum layouts for maximizing profits in energy-only markets (in terms of plant configuration, sizing and operation strategies). The study is performed for a given location nearby Turin, Italy, for which hourly electricity and heat prices, as well as meteorological data, have been gathered. A multi-parameter modeling approach was followed using KTH’s in house techno-economic modeling tool, which uses time-dependent market data, e.g. price and weather, to determine the trade-off curves between minimizing investment and maximizing profits when varying critical size-related power plant parameters e.g. installed power capacities and storage size, for pre-defined layouts and operating strategies. A comparative analysis between the best configurations found for each of the proposed layouts and the reference plant is presented in the discussion section of the results. For the specific case study set in northern Italy, it is shown that the integration of a pre-cooling loop into baseload-like power-oriented combined cycle plants is not justified, calling for investigating new markets and different operating strategies. Only the integration of a heat pump alone was shown to improve the profitability, but within the margin of error of the study. Alternatively, a layout where district heating supply water is preheated with a combination of a heat pump with hot thermal tank was able to increase the internal rate of return of the plant by up to 0.5%, absolute, yet within the error margin and thus not justifying the added complexity in operation and in investment costs. All in all, the analysis shows that even when considering energy-only market revenue streams (i.e. heat and electricity sells) the integration of heat pump and storage units could increase the profitability of plants by making them more flexible in terms of power output levels and load variations. The latter is shown true even when excluding other flexibility-related revenue streams. It is therefore conclusively suggested to further investigate the proposed layouts in markets with larger heat and power price variations, as well as to investigate the impact of additional control logics and dispatch strategies.


2020 ◽  
Vol 12 (8) ◽  
pp. 3330
Author(s):  
Guido Marseglia ◽  
Blanca Fernandez Vasquez-Pena ◽  
Carlo Maria Medaglia ◽  
Ricardo Chacartegui

The Sustainable Development Goals 2030 Agenda of United Nations raises the need of clean and affordable energy. In the pathway for more efficient and environmentally friendly solutions, new alternative power technologies and energy sources are developed. Among these, the use of syngas fuels for electricity generation can be a viable alternative in areas with high biomass or coal availability. This paper presents the energy, environmental and economic analyses of a modern combined cycle plant with the aim to evaluate the potential for a combined power plant running with alternative fuels. The goal is to identify the optimal design in terms of operating conditions and its environmental impact. Two possible configurations are investigated in the power plant presented: with the possibility to export or not export steam. An economic analysis is proposed to assess the plant feasibility. The effect of the different components in its performance is assessed. The impact of using four different syngases as fuel is evaluated and compared with the natural gas fuelled power cycle. The results show that a better efficiency is obtained for the syngas 1 (up to 54%), in respect to the others. Concerning pollutant emissions, the syngas with a GHG impact and lower carbon dioxide (CO2) percentage is syngas 2.


Sign in / Sign up

Export Citation Format

Share Document