Analytical and Computational Modeling of High Pressure Gas Injection

Author(s):  
Allan Kirkpatrick ◽  
Yuan Li ◽  
Charles Mitchell ◽  
Bryan Willson

Abstract The topic of this paper is the analytical and computational modeling of the gas injection process in a large bore natural gas fueled engine. At high injection pressures, the overall gas injection and mixing process includes compressible flow features such as rarefaction waves and shock formation. The injection geometries examined in the paper include both a two dimensional slot and an axisymmetric nozzle. The computations examine the effect of the injection pressure/back pressure ratio, with ratios ranging from 3 to 80. The computational modeling was validated by comparison with results obtained from a 2D analytical method of characteristics solution. The validation process evaluated factors such as pressure and Mach number profiles, jet boundary shape and shock location.

2004 ◽  
Vol 126 (1) ◽  
pp. 192-197 ◽  
Author(s):  
Y. Li ◽  
A. Kirkpatrick ◽  
C. Mitchell ◽  
B. Willson

The topic of this paper is the computational modeling of the gas injection process in a large-bore natural gas fueled engine. At high injection pressures, the overall gas injection and mixing process includes compressible flow features such as rarefaction waves and shock formation. The injection geometries examined in the paper include both a two-dimensional slot and an axisymmetric nozzle. The computations examine the effect of the supply pressure/cylinder stagnation pressure ratio, with ratios ranging from 3 to 80, on the velocity and pressure profiles in the near field region. Computational fluid dynamics modeling was compared with results obtained from a two-dimensional analytical method of characteristics solution and experimental results. The comparison process evaluated factors such as pressure and Mach number profiles, jet boundary shape, and shock location.


2004 ◽  
Vol 126 (3) ◽  
pp. 656-664 ◽  
Author(s):  
Gi-Heon Kim ◽  
Allan Kirkpatrick ◽  
Charles Mitchell

The topic of this paper is the computational modeling of gas injection through various poppet valve geometries in a large bore engine. The objective of the paper is to contribute to a better understanding of the significance of the poppet valve and the piston top in controlling the mixing of the injected fuel with the air in the cylinder. In this paper, the flow past the poppet valve into the engine cylinder is computed for both a low (4 bar) and a high pressure (35 bar) injection process using unshrouded and shrouded valves. Experiments using PLIF (planar laser induced fluorescence) are used to visualize the actual fluid flow for the valve geometries considered. The results indicate that for low injection pressures the gas flow around a typical poppet valve collapses to the axis of symmetry of the valve downstream of the poppet. At high pressure, the gas flow from this simple poppet valve does not collapse, but rather expands outward and flows along the cylinder wall. At high pressures, addition of a shroud around the poppet valve was effective in directing the supersonic flow toward the center of the cylinder. Additional computations with a moving piston show that at top dead center, the flammable volume fraction and turbulence intensity with high pressure shrouded injection are larger than for low pressure injection.


2020 ◽  
pp. 29-32
Author(s):  
A.N. Baghirov ◽  
◽  
Sh.A. Baghirov ◽  

The paper studies the issue of enhancing compressor fleet with the aim of increasing the active gas capacity in the underground gas storages. The aspects, the analysis of which is significant for the task solution are listed. The importance of the development of dynamics graphs for the average daily capacities of gas injection into the reservoir and injection pressure, to the end of each month based on the parameters of reconstruction program and the results of carried out analyses is marked. The comparison of gas injection process using piston gas engines and various types of compressor units is carried out. Technical, technological, fitting, exploitation, service and economic advantages of compressor plant model constructed using offered method of technological transfer are explained.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4308 ◽  
Author(s):  
Evgeny Shilov ◽  
Alexey Cheremisin ◽  
Kirill Maksakov ◽  
Sergey Kharlanov

This work is devoted to CO2 Huff-n-Puff studies on heavy oil. Oil recovery for heavy oil reservoirs is sufficiently small in comparison with conventional reservoirs, and, due to the physical limitation of oil flow through porous media, a strong need for better understanding of tertiary recovery mechanisms of heavy oil exists. Notwithstanding that the idea of Huff-n-Puff gas injection technology for enhanced oil recovery has existed for dozens of years, there is still no any precise methodology for evaluating the applicability and efficiency of this technology in heavy oil reservoirs. Oil recovery factor is a question of vital importance for heavy oil reservoirs. In this work, we repeated Huff-n-Puff tests more than three times at five distinct pressure points to evaluate the applicability and efficiency of CO2 Huff-n-Puff injection to the heavy oil reservoirs. Additionally, the most critical factor that affects oil recovery in gas injection operation is the condition of miscibility. Experimental data allowed to distinguish the mixing zone of the light fractions of studied heavy oil samples. The experimental results showed that the pressure increase in the Huff-n-Puff injection process does not affect the oil recovery when the injection pressure stays between miscibility pressure of light components of oil and minimum miscibility pressure. It was detected that permeability decreases after Huff-n-Puff CO2 tests.


Author(s):  
Gi-Heon Kim ◽  
Allan Kirkpatrick ◽  
Charles Mitchell

The topic of this paper is the computational modeling and experimental visualization of gas injection in a large bore engine. The injection process is accomplished through the use of a mechanically or electrically controlled poppet valve. The objective of the paper is to more fully understand the significance of the poppet valve and the piston top in controlling the mixing of the injected fuel with the air in the cylinder. In this paper, the flow past the poppet valve into the engine cylinder is computed using computational fluid dynamics (CFD) for both a low (4 bar) and a high pressure (34 bar) injection process using unshrouded and shrouded valves. Flow visualization using planar laser induced fluorescence (PLIF) is used to visualize the actual fluid flow. The results indicate that for low pressures the gas flow around the poppet valve collapses downstream of the poppet. At high pressure, the gas flow does not collapse, but flows along the cylinder wall, producing poor mixing in the cylinder. To obtain satisfactory fluid flow at high pressure, the results indicated a shroud should be employed around the poppet valve to direct the gas into the center of the cylinder. Additional computations show that at top dead center, the flammable mixture and fuel mass fraction for the high-pressure injection are significantly greater than for the low-pressure injection.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1739
Author(s):  
María García-Camprubí ◽  
Carmen Alfaro-Isac ◽  
Belén Hernández-Gascón ◽  
José Ramón Valdés ◽  
Salvador Izquierdo

Micro-surface texturing of elastomeric seals is a validated method to improve the friction and wear characteristics of the seals. In this study, the injection process of high-viscosity elastomeric materials in moulds with wall microprotusions is evaluated. To this end, a novel CFD methodology is developed and implemented in OpenFOAM to address rubber flow behaviour at both microscale and macroscale. The first approach allows analyzing the flow perturbation induced by a particular surface texture and generate results to calculate an equivalent wall shear stress that is introduced into the macroscale case through reduced order modelling. The methodology is applied to simulate rubber injection in textured moulds in an academic case (straight pipe) and a real case (D-ring seal mould). In both cases, it is shown that textured walls do not increase the injection pressure and therefore the manufacturing process is not adversely affected.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Fugang Wang ◽  
Zhaoxu Mi ◽  
Zhaojun Sun ◽  
Xufeng Li ◽  
Tianshan Lan ◽  
...  

The multistage and discontinuous nature of the injection process used in the geological storage of CO2 causes reservoirs to experience repeated loading and unloading. The reservoir permeability changes caused by this phenomenon directly impact the CO2 injection process and the process of CO2 migration in the reservoirs. Through laboratory experiments, variations in the permeability of sandstone in the Liujiagou formation of the Ordos CO2 capture and storage (CCS) demonstration project were analyzed using cyclic variations in injection pressure and confining pressure and multistage loading and unloading. The variation in the micropore structure and its influence on the permeability were analyzed based on micropore structure tests. In addition, the effects of multiple stress changes on the permeability of the same type of rock with different clay minerals content were also analyzed. More attention should be devoted to the influence of pressure variations on permeability in evaluations of storage potential and studies of CO2 migration in reservoirs in CCS engineering.


2021 ◽  
Author(s):  
Thaer I. Ismail ◽  
Emad W. Al-Shalabi ◽  
Mahmoud Bedewi ◽  
Waleed AlAmeri

Abstract Gas injection is one of the most commonly used enhanced oil recovery (EOR) methods. However, there are multiple problems associated with gas injection including gravity override, viscous fingering, and channeling. These problems are due to an adverse mobility ratio and cause early breakthrough of the gas resulting, in poor recovery efficiency. A Water Alternating Gas (WAG) injection process is recommended to resolve these problems through better mobility control of gas, leading to better project economics. However, poor WAG design and lack of understanding of the different factors that control its performance might result in unfavorable oil recovery. Therefore, this study provides more insight into improving WAG oil recovery by optimizing different surface and subsurface WAG parameters using a coupled surface and subsurface simulator. Moreover, the work investigates the effects of hysteresis on WAG performance. This case study investigates a field named Volve, which is a decommissioned sandstone field in the North Sea. Experimental design of factors influencing WAG performance on this base case was studied. Sensitivity analysis was performed on different surface and subsurface WAG parameters including WAG ratio, time to start WAG, total gas slug size, cycle slug size, and tubing diameter. A full two-level factorial design was used for the sensitivity study. The significant parameters of interest were further optimized numerically to maximize oil recovery. The results showed that the total slug size is the most important parameter, followed by time to start WAG, and then cycle slug size. WAG ratio appeared in some of the interaction terms while tubing diameter effect was found to be negligible. The study also showed that phase hysteresis has little to no effect on oil recovery. Based on the optimization, it is recommended to perform waterflooding followed by tertiary WAG injection for maximizing oil recovery from the Volve field. Furthermore, miscible WAG injection resulted in an incremental oil recovery between 5 to 11% OOIP compared to conventional waterflooding. WAG optimization is case-dependent and hence, the findings of this study hold only for the studied case, but the workflow should be applicable to any reservoir. Unlike most previous work, this study investigates WAG optimization considering both surface and subsurface parameters using a coupled model.


2016 ◽  
Vol 852 ◽  
pp. 1482-1487
Author(s):  
Fan Cheng ◽  
Yu Hao Jiang ◽  
Jin Bo Chen ◽  
Peng Bo Lu ◽  
Ling Feng Su ◽  
...  

Eco-friendly building materials with perfect thermal insulation & sound absorption property have become intriguing and eye-catching in recent years. In this work, the ultra low-density binderless sandwiching materials were firstly fabricated with ultra low-density of 60-80 kg/m3 by self-designed rapid steam injection technology. The main experimental factor of density, holding time, transmission time, steam injection pressure and fiber’s dimension was respectively investigated to their effects on formation of the new building materials. IR, Py GC-MS and AFM analysis were performed to study the mechanism of binderless sandwiching materials under steam injection process. The bending strength, thermal insulation & sound absorption property of the new materials were also studied. This new building material with no resin use and no formaldehyde release is expected to be reserved as the sandwich for designing thermal insulation & noise reduction building materials.


Sign in / Sign up

Export Citation Format

Share Document