Development of a Phenomenological Combustion Simulation for a Dual Fuel Engine

Author(s):  
Yafeng Liu ◽  
Stuart R. Bell ◽  
K. Clark Midkiff

Abstract A phenomenological cycle simulation for a dual fuel engine has been developed to mathematically simulate the significant processes of the engine cycle, to predict specific performance parameters for the engine, and to investigate approaches to improve performance and reduce emissions. The simulation employs two zones (crevice and unburned) during the processes of exhaust, intake, compression before fuel injection starts, and expansion after combustion ends. From the start of fuel injection to the end of combustion, several, zones are utilized to account for crevice flow, diesel fuel spray, air entrainment, diesel fuel droplet evaporation, ignition delay, flame propagation, and combustion quenching. The crevice zone absorbs charge gas from the cylinder as pressure increases, and releases mass back into the chamber as pressure decreases. Some crevice mass released during late combustion may not be oxidized, resulting in emissions of hydrocarbon and carbon monoxide. Quenching ahead of the flame front may leave additional charge unburned, yielding high methane emissions. Potential reduction of engine-out NOx emissions with natural gas fueling has also been investigated. The higher substitution of natural gas in the engine produces less engine-out NOx emissions. This paper presents the development of the model, baseline predictions, and comparisons to experimental measurements performed in a single-cylinder Caterpillar 3400 series engine.

Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


2021 ◽  
Vol 9 (2) ◽  
pp. 123
Author(s):  
Sergejus Lebedevas ◽  
Lukas Norkevičius ◽  
Peilin Zhou

Decarbonization of ship power plants and reduction of harmful emissions has become a priority in the technological development of maritime transport, including ships operating in seaports. Engines fueled by diesel without using secondary emission reduction technologies cannot meet MARPOL 73/78 Tier III regulations. The MEPC.203 (62) EEDI directive of the IMO also stipulates a standard for CO2 emissions. This study presents the results of research on ecological parameters when a CAT 3516C diesel engine is replaced by a dual-fuel (diesel-liquefied natural gas) powered Wartsila 9L20DF engine on an existing seaport tugboat. CO2, SO2 and NOx emission reductions were estimated using data from the actual engine load cycle, the fuel consumption of the KLASCO-3 tugboat, and engine-prototype experimental data. Emission analysis was performed to verify the efficiency of the dual-fuel engine in reducing CO2, SO2 and NOx emissions of seaport tugboats. The study found that replacing a diesel engine with a dual-fuel-powered engine led to a reduction in annual emissions of 10% for CO2, 91% for SO2, and 65% for NOx. Based on today’s fuel price market data an economic impact assessment was conducted based on the estimated annual fuel consumption of the existing KLASCO-3 seaport tugboat when a diesel-powered engine is replaced by a dual-fuel (diesel-natural gas)-powered engine. The study showed that a 33% fuel costs savings can be achieved each year. Based on the approved methodology, an ecological impact assessment was conducted for the entire fleet of tugboats operating in the Baltic Sea ports if the fuel type was changed from diesel to natural gas. The results of the assessment showed that replacing diesel fuel with natural gas achieved 78% environmental impact in terms of NOx emissions according to MARPOL 73/78 Tier III regulations. The research concludes that new-generation engines on the market powered by environmentally friendly fuels such as LNG can modernise a large number of existing seaport tugboats, significantly reducing their emissions in ECA regions such as the Baltic Sea.


2021 ◽  
Author(s):  
Yoichi Niki

Abstract NH3 has been investigated for its use as an alternative fuel including for use in internal combustion engines. In NH3 combustion, emissions of unburned NH3 with toxicity and N2O as a combustion product with high global warming potential (GWP) are important issues. However, few researchers have investigated NH3 and N2O emissions from NH3 assisted diesel engines operated using NH3–diesel dual fuel. We investigate a combustion strategy to reduce these emissions with a single-cylinder diesel engine mixed NH3 gas into the intake air. We found that an early diesel pilot injection reduced unburned NH3 and N2O emissions while HC and CO emissions increased. It was also reported that NH3 and diesel fuel work as low and high reactivity fuel for reactivity controlled compression ignition combustion (RCCI), respectively. Our previous study reports the aspects of RCCI on NH3–diesel dual fuel engine to some extent. The injection timing of diesel fuel and the quantity of NH3 govern the emissions and performance on RCCI combustion. These effects need to be investigated to manipulate the RCCI combustion and reduce emissions. This paper reports the efficiency and emissions for the diesel pilot injection timing sweep at various NH3 supply quantities and the effects of a split injection on the emissions and a combustion phase. In addition, we estimated the reduction in GHG emissions using a NH3–diesel dual fuel engine, which applied the early diesel pilot injection, compared with the diesel only operation, considering the N2O GWP.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2413 ◽  
Author(s):  
Lebedevas ◽  
Pukalskas ◽  
Daukšys ◽  
Rimkus ◽  
Melaika ◽  
...  

This paper presents a study on the energy efficiency and emissions of a converted high-revolution bore 79.5 mm/stroke 95 mm engine with a conventional fuel injection system for operation with dual fuel feed: diesel (D) and natural gas (NG). The part of NG energy increase in the dual fuel is related to a significant deterioration in energy efficiency (ηi), particularly when engine operation is in low load modes and was determined to be below 40% of maximum continuous rating. The effectiveness of the D injection timing optimisation was established in high engine load modes within the range of a co-combustion ratio of NG ≤ 0.4: with an increase in ηi, compared to D, the emissions of NOx+ HC decreased by 15% to 25%, while those of CO2 decreased by 8% to 16%; the six-fold CO emission increase, up to 6 g/kWh, was unregulated. By referencing the indicated process characteristics of the established NG phase elongation in the expansion stroke, the combustion time increase as well as the associated decrease in the cylinder excess air ratio (α) are possible reasons for the increase in the incomplete combustion product emission.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 946 ◽  
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik

The aim of the work is a comparison of two combustion systems of fuels with different reactivity. The first is combustion of the fuel mixture and the second is combustion in a dual-fuel engine. Diesel fuel was burned with pure ethanol. Both methods of co-firing fuels have both advantages and disadvantages. Attention was paid to the combustion stability aspect determined by COVIMEP as well as the probability density function of IMEP. It was analyzed also the spread of the maximum pressure value, the angle of the position of maximum pressure. The influence of ethanol on ignition delay time spread and end of combustion process was evaluated. The experimental investigation was conducted on 1-cylinder air cooled compression ignition engine. The test engine operated with constant rpm equal to 1500 rpm and constant angle of start of diesel fuel injection. The engine was operated with ethanol up to 50% of its energy fraction.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
K. K. Srinivasan ◽  
S. R. Krishnan ◽  
Y. Qi

Dual fuel pilot-ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed combustion (PPC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90% relative to neat diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel PPC is achieved by appropriately timed injection of a small amount of diesel fuel (2–3% on an energy basis) to ignite a premixed natural gas–air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed “relative combustion phasing”). For conventional dual fueling, as NG substitution increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel PPC, as diesel injection timing is advanced from 20 deg to 60 deg BTDC, Pmax is observed to increase and reach a maximum at 40 deg BTDC and then decrease with further pilot injection advance to 60 deg BTDC, the Ca50 is progressively phased closer to TDC with injection advance from 20 deg to 40 deg BTDC, and is then retarded away from TDC with further injection advance to 60 deg BTDC. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high NG substitutions and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel PPC.


Author(s):  
Reed Hanson ◽  
Andrew Ickes ◽  
Thomas Wallner

Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.


Sign in / Sign up

Export Citation Format

Share Document