Influence of Inlet Conditions on Flow and Combustion Characteristics of a Model Annular Combustor

Author(s):  
F. Baron ◽  
M. Kanniche ◽  
N. Mechitoua

k-ε model coupled with chemical equilibrium hypothesis is applied to a sector of an annular gas turbine combustion chamber similar to the one used in small gas turbine engines. The β-function is used as probability-density-function (pdf) of the distribution of a mixing rate scalar. The computation results are compared with velocity, temperature and species concentration measurements with air-to-fuel ratio of 29 and two inlet air temperatures of 315 K and 515 K. The measurements are reported in the PhD thesis of Tse [2] and in Bicen et al. [1]. Computed velocity and temperature are in good agreement with measurements, except close to primary injection holes where the normal impacts of air jets with the bulk flow involve strong streamline curvature which cannot be well predicted by standard k-ε model. Computed species concentrations are in good agreement with measurements, except (as expected) for CO concentration which is overestimated. Since the kinetic of CO burn-up is limited, the overestimation of CO concentration is a consequence of the simplified chemical reaction step.

Author(s):  
T. Becker ◽  
M. A. Perkavec

The NOx emissions of gas turbines are depending on different influences. On the one side there are the effects fixed by the gas turbine design and on the other side the ambient effects, the fuel properties and the operational conditions. Because the NOx emissions are difficult to calculate by chemical reactions and flow calculations, some investigators developed semianalytical equations, which in their opinion contained the most important influencing factors together with some tuning factors for the actual gas turbine design and application. This paper shows the capability of those procedures, including a new one. It compares the calculated NOx emission with measured data. The comparisons were made for one gas turbine fired with different fuels (natural gas, propane, butane, coke oven gas), as well as for different combustor inlet conditions in case of simple and regenerative cycle operation. Reference is made also for some other gas turbine models. Also full and part load operation as well as the steam injection effects are included.


2019 ◽  
Vol 67 (6) ◽  
pp. 483-492
Author(s):  
Seonghyeon Baek ◽  
Iljae Lee

The effects of leakage and blockage on the acoustic performance of particle filters have been examined by using one-dimensional acoustic analysis and experimental methods. First, the transfer matrix of a filter system connected to inlet and outlet pipes with conical sections is measured using a two-load method. Then, the transfer matrix of a particle filter only is extracted from the experiments by applying inverse matrices of the conical sections. In the analytical approaches, the one-dimensional acoustic model for the leakage between the filter and the housing is developed. The predicted transmission loss shows a good agreement with the experimental results. Compared to the baseline, the leakage between the filter and housing increases transmission loss at a certain frequency and its harmonics. In addition, the transmission loss for the system with a partially blocked filter is measured. The blockage of the filter also increases the transmission loss at higher frequencies. For the simplicity of experiments to identify the leakage and blockage, the reflection coefficients at the inlet of the filter system have been measured using two different downstream conditions: open pipe and highly absorptive terminations. The experiments show that with highly absorptive terminations, it is easier to see the difference between the baseline and the defects.


2021 ◽  
Vol 11 (3) ◽  
pp. 1243
Author(s):  
Hongseok Jeong ◽  
Jeung-Hoon Lee ◽  
Yong-Hyun Kim ◽  
Hanshin Seol

The dominant underwater noise source of a ship is known to be propeller cavitation. Recently, attempts have been made to quantify the source strength using on-board pressure sensors near the propeller, as this has advantages over conventional noise measurement. In this study, a beamforming method was used to estimate the source strength of a cavitating propeller. The method was validated against a model-scale measurement in a cavitation tunnel, which showed good agreement between the measured and estimated source levels. The method was also applied to a full-scale measurement, in which the source level was measured using an external hydrophone array. The estimated source level using the hull pressure sensors showed good agreement with the measured one above 400 Hz, which shows potential for noise monitoring using on-board sensors. A parametric study was carried out to check the practicality of the method. From the results, it was shown that a sufficient recording time is required to obtain a consistent level at high frequencies. Changing the frequency resolution had little effect on the result, as long as enough data were provided for the one-third octave band conversion. The number of sensors affected the mid- to low-frequency data.


Author(s):  
Farrokh Zarifi-Rad ◽  
Hamid Vajihollahi ◽  
James O’Brien

Scale models give engineers an excellent understanding of the aerodynamic behavior behind their design; nevertheless, scale models are time consuming and expensive. Therefore computer simulations such as Computational Fluid Dynamics (CFD) are an excellent alternative to scale models. One must ask the question, how close are the CFD results to the actual fluid behavior of the scale model? In order to answer this question the engineering team investigated the performance of a large industrial Gas Turbine (GT) exhaust diffuser scale model with performance predicted by commercially available CFD software. The experimental results were obtained from a 1:12 scale model of a GT exhaust diffuser with a fixed row of blades to simulate the swirl generated by the last row of turbine blades five blade configurations. This work is to validate the effect of the turbulent inlet conditions on an axial diffuser, both on the experimental front and on the numerical analysis approach. The object of this work is to bring forward a better understanding of velocity and static pressure profiles along the gas turbine diffusers and to provide an accurate experimental data set to validate the CFD prediction. For the CFD aspect, ANSYS CFX software was chosen as the solver. Two different types of mesh (hexagonal and tetrahedral) will be compared to the experimental results. It is understood that hexagonal (HEX) meshes are more time consuming and more computationally demanding, they are less prone to mesh sensitivity and have the tendancy to converge at a faster rate than the tetrahedral (TET) mesh. It was found that the HEX mesh was able to generate more consistent results and had less error than TET mesh.


Author(s):  
Jun Su Park ◽  
Namgeon Yun ◽  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Sin-Ho Kang ◽  
...  

This paper presents thermal analyses of the cooling system of a transition piece, which is one of the primary hot components in a gas turbine engine. The thermal analyses include heat transfer distributions induced by heat and fluid flow, temperature, and thermal stresses. The purpose of this study is to provide basic thermal and structural information on transition piece, to facilitate their maintenance and repair. The study is carried out primarily by numerical methods, using the commercial software, Fluent and ANSYS. First, the combustion field in a combustion liner with nine fuel nozzles is analyzed to determine the inlet conditions of a transition piece. Using the results of this analysis, pressure distributions inside a transition piece are calculated. The outside of the transition piece in a dump diffuser system is also analyzed. Information on the pressure differences is then used to obtain data on cooling channel flow (one of the methods for cooling a transition piece). The cooling channels have exit holes that function as film-cooling holes. Thermal and flow analyses are carried out on the inside of a film-cooled transition piece. The results are used to investigate the adjacent temperatures and wall heat transfer coefficients inside the transition piece. Overall temperature and thermal stress distributions of the transition piece are obtained. These results will provide a direction to improve thermal design of transition piece.


Author(s):  
O. Adamidis ◽  
G. S. P. Madabhushi

Loosely packed sand that is saturated with water can liquefy during an earthquake, potentially causing significant damage. Once the shaking is over, the excess pore water pressures that developed during the earthquake gradually dissipate, while the surface of the soil settles, in a process called post-liquefaction reconsolidation. When examining reconsolidation, the soil is typically divided in liquefied and solidified parts, which are modelled separately. The aim of this paper is to show that this fragmentation is not necessary. By assuming that the hydraulic conductivity and the one-dimensional stiffness of liquefied sand have real, positive values, the equation of consolidation can be numerically solved throughout a reconsolidating layer. Predictions made in this manner show good agreement with geotechnical centrifuge experiments. It is shown that the variation of one-dimensional stiffness with effective stress and void ratio is the most crucial parameter in accurately capturing reconsolidation.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Serena Romano ◽  
Roberto Meloni ◽  
Giovanni Riccio ◽  
Pier Carlo Nassini ◽  
Antonio Andreini

Abstract This paper addresses the impact of natural gas composition on both the operability and emissions of lean premixed gas turbine combustion system. This is an issue of growing interest due to the challenge for gas turbine manufacturers in developing fuel-flexible combustors capable of operating with variable fuel gases while producing very low emissions at the same time. Natural gas contains primarily methane (CH4) but also notable quantities of higher order hydrocarbons such as ethane (C2H6) can also be present. A deep understanding of natural gas combustion is important to obtain the highest combustion efficiency with minimal environmental impact. For this purpose, Large Eddy Simulations of an annular combustor sector equipped with a partially premixed burner are carried out for two different natural gas compositions with and without including the effect of flame strain rate and heat loss resulting in a more adequate description of flame shape, thermal field, and extinction phenomena. Promising results, in terms of NOx, compared against available experimental data, are obtained including these effects on the flame brush modeling, enhancing the fuel-dependency under nonadiabatic condition.


Author(s):  
Daniel Burdett ◽  
Chris Hambidge ◽  
Thomas Povey

Accurate assessment of nozzle guide vane (NGV) capacity is essential for understanding engine performance data, and to achieve accurate turbine stage matching. In accelerated engine development programmes in particular, accurate and early assessment of NGV capacity is a significant advantage. Whilst the capabilities of computational methods have improved rapidly in recent years, the accuracy of absolute capacity prediction capability is lower than experimental techniques by some margin. Thus, experimental measurement of NGV capacity is still regarded as an essential part of many engine programmes. The semi-transient capacity measurement technique, developed and refined at the University of Oxford over the last 10 years, allows rapid and accurate measurement of engine component (typically fully cooled NGVs) capacity at engine-representative conditions of Mach and Reynolds numbers and coolant-to-mainstream pressure ratio. The technique has been demonstrated to offer considerable advantages over traditional (industrial steady-state) techniques in terms of accuracy, time and operating cost. Since the original facility was constructed, the facility has been modularised to allow for rapid interchange of test vane modules, and the instrumentation has been optimised to drive down the uncertainty in NGV capacity. In this paper, these improvements are described in detail, and a detailed uncertainty analysis is presented of the original facility, the current facility, and a proposed future facility in which the uncertainty of the measurement has been driven down to a practical limit. The bias errors of the three facilities are determined to be ±0.535%, ± 0.495% and ±0.301%, respectively (to 95% confidence). The corresponding precision uncertainties are ±0.028%, ±0.025% and ±0.025%, respectively. The extremely low precision uncertainty in particular allows very small changes in capacity to be resolved. This, combined with rapid interchangeability of test modules, allows studies of the sensitivity of capacity to secondary influences with much greater flexibility than was previously possible. Consideration is also given to the definition of vane capacity in systems with several streams at different conditions of inlet total pressure and temperature. A typical high pressure (HP) NGV has three distinct streams: a mainstream flow; coolant flow ejected from film cooling holes (distributed over the vane surface); and trailing edge coolant ejection. Whilst it is helpful for the coolant mass flow rates and inlet temperatures to be included in the definition, only a relatively small difference arises from the way in which this is achieved. Several definitions appear to share similar usefulness in terms of their robustness to changing inlet conditions of individual streams, but the favoured definition offers the possibility of isolating sensitivities to key effects such as trailing edge coolant ejection. This is achieved by explicitly expressing vane capacity as a function of two controlling pressure ratios. The overall purpose of this paper is to review and analyse in detail the current state-of-the-art in gas turbine flow capacity measurement.


Author(s):  
Ulf R. Rådeklint ◽  
Christer S. Hjalmarsson

A high pressure hot test facility for cooled gas turbine components has been developed for use in turbine cooling research. In this facility, heat transfer tests for a sector of real turbine vanes can be performed under continuous operation. The heat transfer tests are performed at an operating point that is scaled down from the real engine operating point. The compressor can deliver air at the rate of up to 10 kg/s at 20 bars. Air temperatures of up to 1170 K can be achieved by using an oil-fired combustor. Besides conventional instrumentation such as thermocouples and pressure probes, the facility is equipped with an IR-camera to map two-dimensional wall temperature fields. Hot wire anemometry and an LDV system are used to determine mean and fluctuating velocity components. This paper describes design and performance of the test facility as well as the control and measurement equipment. The test and evaluation procedures used for testing of cooled gas turbine vanes are also presented.


1978 ◽  
Vol 44 (6) ◽  
pp. 918-925 ◽  
Author(s):  
E. Kamon ◽  
B. Avellini ◽  
J. Krajewski

Heat-acclimated, lightly clothed men and women (four of each) walked on a treadmill at 25% and 43% VO2 max, respectively, (M =194 W.m-2), under seven air temperatures (Ta) ranging from 36 to 52 degrees C. Each experiment involved 1 h of fixed and a 2nd h of progressively increasing ambient vapor pressure (Pa). The relative steady state of rectal temperature (Tre), mean skin temperature (Tsk), and heart rate (HR) reached in the 1st h were forced upward during the 2nd h by the rising Pa. The critical air vapor pressure (Pcrit) was identified by the Tre point of inflection for each Ta. One man did not fully reach steady state, but inflection could be determined for his physiological responses. The mean values of all points of inflection were calculated for Tre, Tsk, and HR. Significant sex difference in HR was found only by excluding the results of the one man. Tre and Tsk showed no significant difference between men and women. The coefficient for evaporative heat transfer (he), which could be derived using the Pcrit for the low Ta range, was 14.5 +/- 2.2 W.m-1 Torr-1.


Sign in / Sign up

Export Citation Format

Share Document