scholarly journals A Numerically Supported Investigation of the 3D Flow in Centrifugal Impellers: Part II — Secondary Flow Structure

Author(s):  
Ch. Hirsch ◽  
S. Kang ◽  
G. Pointel

The three-dimensional flow in centrifugal impellers is investigated on the basis of a detailed analysis of the results of numerical simulations. An in-depth validation has been performed, based on the computations of Krain’s centrifugal compressor and a radial pump impeller, both with vaneless diffusers and detailed comparisons with available experimental data, discussed in Part I, provide high confidence in the numerical tools and results. The low energy, high loss ‘wake’ region results from a balance between various contributions to the secondary flows influenced by tip leakage flows and is not necessarily connected to 3D boundary layer separation. A quantitative evaluation of the different contributions to the streamwise vorticity is performed, identifying the main features influencing their intensity. The main contributions are: the passage vortices along the end walls due to the flow turning; a passage vortex generated by the Coriolis forces proportional to the local loading and mainly active in the radial parts of the impeller; blade surface vortices due to the meridional curvature. The analysis provides an explanation for the differences in wake position under different geometries and flow conditions. A secondary flow representation is derived from the calculated 3D flow field for the two geometries validated in Part I, and the identified flow features largely confirm the theoretical analysis.

Author(s):  
Ch. Hirsch ◽  
S. Kang ◽  
G. Pointel

The three-dimensional flow in centrifugal impellers is investigated on the basis of a detailed analysis of the results of numerical simulations. In order to gain confidence in this process, an in-depth validation is performed, based on computations of Krain’s centrifugal compressor and of a radial pump impeller, both with vaneless diffusers. Detailed comparisons with available experimental data provide high confidence in the numerical tools and results. The appearance of a high loss ‘wake’ region results from the transport of boundary layer material from the blade surfaces to the shroud region and its location depends on the balance between secondary and tip leakage flows and is not necessarily connected to 3D boundary layer separation. Although the low momentum spots near the shroud can interfere with 3D separated regions, the main outcome of the present analysis is that these are two distinct phenomena. Part I of this paper focuses on the validation base of the numerical approach, based on fine mesh simulations, while Part II presents an analysis of the different contributions to the secondary flows and attempts to estimate their effect on the overall flow pattern.


1989 ◽  
Vol 111 (4) ◽  
pp. 369-377 ◽  
Author(s):  
F. Bassi ◽  
C. Osnaghi ◽  
A. Perdichizzi ◽  
M. Savini

The paper presents a comparison between numerical results and experimental data about the secondary flow development in a linear transonic turbine cascade. Computations are carried out by using a three-dimensional inviscid Euler code, based on a Runge-Kutta explicit finite volume method. The experimental inlet total pressure distribution is imposed as inlet boundary condition to simulate the incoming endwall boundary layer. The comparison is made in four planes downstream of the cascade where detailed experimental data obtained in a transonic wind tunnel are available. For each of these planes secondary velocities and streamwise vorticity contour plots are presented and discussed. Moreover pitchwise mass averaged flow angle distributions showing overturning and underturning regions are shown. The comparison shows that an Euler code can predict the essential features of secondary flow phenomena like passage vortex location and intensity but a certain disagreement is found in the overturning and underturning angles evaluation. Numerical results also allow for the investigation of the development of secondary flows inside the blade channel. The investigation is carried out for three different Mach numbers: M2is = 0.5, 1.02, 1.38, in order to show the influence of compressibility on the flow vortex structure.


Author(s):  
A. Perdichizzi ◽  
V. Dossena

This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from −60 to +35 degrees, and for three pitch-chord ratios: s/c = 0.58,0.73,0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five hole probe in a plane located at 50% of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots show in detail how much the secondary flow field is modified both by incidence and cascade solidity variations. The level of secondary vorticity and the intensity of the crossflow at the endwall have been found to be strictly related to the blade loading occurring in the blade entrance region. Heavy changes occur in the spanwise distributions of the pitch averaged loss and of the deviation angle, when incidence or pitch-chord ratio is varied.


Author(s):  
S. Friedrichs ◽  
H. P. Hodson ◽  
W. N. Dawes

The endwall film-cooling cooling configuration investigated by Friedrichs et al. (1996, 1997) had in principle sufficient cooling flow for the endwall, but in practice, the redistribution of this coolant by secondary flows left large endwall areas uncooled. This paper describes the attempt to improve upon this datum cooling configuration by redistributing the available coolant to provide a better coolant coverage on the endwall surface, whilst keeping the associated aerodynamic losses small. The design of the new, improved cooling configuration was based on the understanding of endwall film-cooling described by Friedrichs et al. (1996, 1997). Computational fluid dynamics were used to predict the basic flow and pressure field without coolant ejection. Using this as a basis, the above described understanding was used to place cooling holes so that they would provide the necessary cooling coverage at minimal aerodynamic penalty. The simple analytical modelling developed in Friedrichs et al. (1997) was then used to check that the coolant consumption and the increase in aerodynamic loss lay within the limits of the design goal. The improved cooling configuration was tested experimentally in a large scale, low speed linear cascade. An analysis of the results shows that the redesign of the cooling configuration has been successful in achieving an improved coolant coverage with lower aerodynamic losses, whilst using the same amount of coolant as in the datum cooling configuration. The improved cooling configuration has reconfirmed conclusions from Friedrichs et al. (1996, 1997); firstly, coolant ejection downstream of the three-dimensional separation lines on the endwall does not change the secondary flow structures; secondly, placement of holes in regions of high static pressure helps reduce the aerodynamic penalties of platform coolant ejection; finally, taking account of secondary flow can improve the design of endwall film-cooling configurations.


Author(s):  
Huimin Tang ◽  
Shuaiqiang Liu ◽  
Hualing Luo

Profiled endwall is an effective method to improve aerodynamic performance of turbine. This approach has been widely studied in the past decade on many engines. When automatic design optimisation is considered, most of the researches are usually based on the assumption of a simplified simulation model without considering cooling and rim seal flows. However, many researchers find out that some of the benefits achieved by optimization procedure are lost when applying the high-fidelity geometry configuration. Previously, an optimization procedure has been implemented by integrating the in-house geometry manipulator, a commercial three-dimensional CFD flow solver and the optimization driver, IsightTM. This optimization procedure has been executed [12] to design profiled endwalls for a turbine cascade and a one-and-half stage axial turbine. Improvements of the turbine performance have been achieved. As the profiled endwall is applied to a high pressure turbine, the problems of cooling and rim seal flows should be addressed. In this work, the effects of rim seal flow and cooling on the flow field of two-stage high pressure turbine have been presented. Three optimization runs are performed to design the profiled endwall of Rotor-One with different optimization model to consider the effects of rim flow and cooling separately. It is found that the rim seal flow has a significant impact on the flow field. The cooling is able to change the operation condition greatly, but barely affects the secondary flow in the turbine. The influences of the profiled endwalls on the flow field in turbine and cavities have been analyzed in detail. A significant reduction of secondary flows and corresponding increase of performance are achieved when taking account of the rim flows into the optimization. The traditional optimization mechanism of profiled endwall is to reduce the cross passage gradient, which has great influence on the strength of the secondary flow. However, with considering the rim seal flows, the profiled endwall improves the turbine performance mainly by controlling the path of rim seal flow. Then the optimization procedure with consideration of rim seal flow has also been applied to the design of the profiled endwall for Stator Two.


1990 ◽  
Vol 112 (4) ◽  
pp. 1063-1069 ◽  
Author(s):  
M. Choi ◽  
Y. T. Lin ◽  
R. Greif

The secondary flows resulting from buoyancy effects in respect to the MCVD process have been studied in a rotating horizontal tube using a perturbation analysis. The three-dimensional secondary flow fields have been determined at several axial locations in a tube whose temperature varies in both the axial and circumferential directions for different rotational speeds. For small rotational speeds, buoyancy and axial convection are dominant and the secondary flow patterns are different in the regions near and far from the torch. For moderate rotational speeds, the effects of buoyancy, axial and angular convection are all important in the region far from the torch where there is a spiraling secondary flow. For large rotational speeds, only buoyancy and angular convection effects are important and no spiraling secondary motion occurs far downstream. Compared with thermophoresis, the important role of buoyancy in determining particle trajectories in MCVD is presented. As the rotational speed increases, the importance of the secondary flow decreases and the thermophoretic contribution becomes more important. It is noted that thermophoresis is considered to be the main cause of particle deposition in the MCVD process.


Author(s):  
Akira Goto

The complex three-dimensional flow fields in a mixed-flow pump impeller are investigated by applying the incompressible version of the Dawes’ 3D Navier-Stokes code. The applicability of the code is confirmed by comparison of computations with a variety of experimentally measured jet-wake flow patterns and overall performances at four different tip clearances including the shrouded case. Based on the computations, the interaction mechanism of secondary flows and the formation of jet-wake flow are discussed. In the case of large tip clearances, the reverse flow caused by tip leakage flow is considered to be the reason for the thickening of the casing boundary layer followed by the deterioration of the whole flow field.


Author(s):  
P W James

The purpose of this paper is, firstly, to show how the concept of excess secondary vorticity arises naturally from attempts to recover three-dimensional flow details lost in passage-averaging the equations governing the flow through gas turbines. An equation for the growth of excess streamwise vorticity is then derived. This equation, which allows for streamwise entropy gradients through a prescribed loss term, could be integrated numerically through a blade-row to provide the excess vorticity at the exit to a blade-row. The second part of the paper concentrates on the approximate methods of Smith (1) and Came and Marsh (2) for estimating this quantity and demonstrates their relationship to each other and to the concept of excess streamwise vorticity. Finally the relevance of the results to the design of blading for gas turbines, from the point of view of secondary flow, is discussed.


2000 ◽  
Vol 123 (2) ◽  
pp. 274-280 ◽  
Author(s):  
Sang Woo Lee ◽  
Seong Kuk Joo ◽  
Joon Sik Lee

Presented are three-dimensional mean velocity components and aerodynamic loss data inside circular injection holes. The holes are normally oriented to a crossflow and each hole has a sharp square-edged inlet. Because of their importance to flow behavior, three different blowing ratios, M=0.5, 1.0, and 2.0, and three hole length-to-diameter ratios, L/D=0.5, 1.0, and 2.0, are investigated. The entry flow is characterized by a separation bubble, and the exit flow is characterized by direct interaction with the crossflow. The uniform oncoming flow at the inlet undergoes a strong acceleration and a subsequent gradual deceleration along a converging–diverging flow passage formed by the inlet separation bubble. After passing the throat of the converging–diverging passage, the potential core flow, which is nearly axisymmetric, decelerates on the windward side, but tends to accelerate on the leeward side. The presence of the crossflow thus reduces the discharge of the injectant on the windward side, but enhances its efflux on the leeward side. This trend is greatly accentuated at M=0.5. In general, there are strong secondary flows in the inlet and exit planes of the injection hole. The secondary flow within the injection hole, on the other hand, is found to be relatively weak. The inlet secondary flow is characterized by a strong inward flow toward the injection-hole center. However, it is not completely directed inward since the crossflow effect is superimposed on it. Past the throat, secondary flow is observed such that the leeward velocity component induced by the crossflow is superimposed on the diverging flow. Short L/D usually results in an exit discharging flow with a steep velocity gradient as well as a strong deceleration on the windward side, as does low M. The aerodynamic loss inside the injection hole originates from the inlet separation bubble, wall friction and interaction of the injectant with the crossflow. The first one is considered as the most dominant source of loss, even in the case of L/D=2.0. At L/D=0.5, the first and third sources are strongly coupled with each other. Regardless of L/D, the mass-averaged aerodynamic loss coefficient has an increasing tendency with increasing M.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Jonathan Ong ◽  
Robert J. Miller ◽  
Sumiu Uchida

This paper presents a study of the effects of two types of hub coolant injection on the rotor of a high pressure gas turbine stage. The first involves the leakage flow from the hub cavity into the mainstream. The second involves a deliberate injection of coolant from a row of angled holes from the edge of the stator hub. The aim of this study is to improve the distribution of the injected coolant on the rotor hub wall. To achieve this, it is necessary to understand how the coolant and leakage flows interact with the rotor secondary flows. The first part of the paper shows that the hub leakage flow is entrained into the rotor hub secondary flow and the negative incidence of the leakage strengthens the secondary flow and increases its penetration depth. Three-dimensional unsteady calculations were found to agree with fast response pressure probe measurements at the rotor exit of a low speed test turbine. The second part of the paper shows that increasing the injected coolant swirl angle reduced the secondary flow penetration depth, improves the coolant distribution on the rotor hub, and improves stage efficiency. Most of the coolant however, was still found to be entrained into the rotor secondary flow.


Sign in / Sign up

Export Citation Format

Share Document