The Effects of Multiphase, Multi-Viscosity Fluids on Axial Thrust and Cooling Flow Performance of a Canned Motor Pump

Author(s):  
Eric Conaway ◽  
Jose Matos ◽  
Ryan Mesiano

Abstract A canned motor pump for technology demonstration in subsea oil and gas systems was tested to provide data to understand the design, modeling and performance characteristics of a canned motor pump operating in multiphase flow. This paper discusses the impact of multiphase flow and fluid viscosity on axial thrust and motor cooling flow characteristics. The technology demonstrator is a two-stage, low specific speed (Ns∼550) centrifugal pump designed to deliver 140 gpm at 600 feet of head at 3930 rpm. The 61 hp canned motor is cooled by a small portion of the pump discharge fluid, which is drawn downward through the motor by pump out vanes on the hub of the second stage impeller. The multiphase test loop is equipped for both water and light oil operation in low pressure and ambient temperature conditions. Testing occurred over a range of conditions to simulate varying fluid properties and operating scenarios. Shaft rotational speed varied between 2000 and 4250 rpm with pump liquid flow rates from 25 to 250 gpm. These operating scenarios were repeated for both water and light oil (∼2 cP) with multiphase flow ranging from 0–20% gas volume fraction (GVF) using injected air. Testing results indicate a detectable impact from the different fluids and GVF’s tested, which can be related to features such as the second stage impeller pump-out vane and regions within the motor cavities. In water-air tests, increasing GVF led to the following: motor input power reduced by 5%; axial thrust increased by 100%; motor cooling fluid temperature rise increased by 100%; and pressure rise in the second stage pump out vanes reduced by 30% - directly impacting motor cooling flow rate, temperature rise, and axial thrust. In the oil-air tests, multiphase flow showed similar tendencies with reduced magnitude. Notably, the effects due to air injection do not appear at GVF below 15% with oil-air mixtures, unlike water-air tests which demonstrated effects across all GVFs. The test results provide insight into the behavior of variable viscosity, multiphase flow in the canned motor pump cooling passages, as driven by the second stage impeller pump out vanes. These observed characteristics can be used to design flow control features and evaluate operational impacts, while the performance data obtained can be used to assess the behavior of flow models for this application.

2021 ◽  
Author(s):  
Soheila Taghavi ◽  
Ismarullizam Mohd Ismail ◽  
Haavard Aakre ◽  
Vidar Mathiesen

Abstract To increase the production and recovery of marginal, mature, and challenging oil reservoirs, developing new inflow control technologies is of great importance. In cases where production of surrounding reservoir fluids such as gas and water can cause negative effects on both the total oil recovery and the amounts of energy required to drain the reservoir, the multiphase flow performances of these technologies are of particular significance. In typical cases, a Long Horizontal Well (LHW) will eventually start producing increasing amounts of these fluids. This will cause the Water Cut (WC) and/or Gas Oil Ratio (GOR) to rise, ultimately forcing the well to be shut down even though there still are considerable amounts of oil left in the reservoir. In earlier cases, Inflow Control Devices (ICD) and Autonomous Inflow Control Devices (AICD) have proven to limit these challenges and increase the total recovery by balancing the influx along the well and delaying the breakthrough of gas and/or water. The Autonomous Inflow Control Valve (AICV) builds on these same principles, and in addition has the ability to autonomously close when breakthrough of unwanted gas and/or water occurs. This will even out the total drawdown in the well, allowing it to continue producing without the WC and/or GOR reaching inacceptable limits. As part of the qualification program of the light-oil AICV, extensive flow performance tests have been carried out in a multiphase flow loop test rig. The tests have been performed under realistic reservoir conditions with respect to variables such as pressure and temperature, with model oil, water, and gas at different WC's and GOR's. Conducting these multiphase experiments has been valuable in the process of establishing the AICV's multiphase flow behavior, and the results are presented and discussed in this paper. Single phase performance and a comparison with a conventional ICD are also presented. The results display that the AICV shows significantly better performance than the ICD, both for single and multiphase flow. A static reservoir modelling method have been used to evaluate the AICV performance in a light-oil reservoir. When compared to a screen-only completion and an ICD completion, the simulation shows that a completion with AICV's will outperform the above-mentioned completions with respect to WC and GOR behavior. A discussion on how this novel AICV can be utilized in marginal, mature, and other challenging reservoirs will be provided in the paper.


Author(s):  
Changjiang Huo ◽  
Jinju Sun ◽  
Peng Song ◽  
Shan Sun

Abstract An excessive rotor axial thrust in any turbomachine can cause critical operational problems, and rotor axial thrust balancing has always attracted much attention. The present numerical study is focused on axial thrust balancing for a cryogenic liquid turbine expander, whose axial thrust balancing is typically challenging because of its small impeller size and large axial thrust. A computational fluid dynamics (CFD) simulation is conducted in a real turbine expander environment constituted by main and gap flow domains with allowing for the thermodynamic effect of liquefied air. The balance hole influential mechanism on the main and gap flows is explored, and its influence on the expander axial thrust and overall performance is quantified. The results show that the use of balance holes creates a highly swirling gap flow, and the static pressure over the impeller disk back-side surface decreases to produce a small axial component force and axial thrust, but the turbine expander overall efficiency drops by 1.1 and 2.8 points at 100% and 50% design flow, respectively, due to an increased internal leakage loss and distorted impeller flow. In addition, a parametric study is conducted to analyze the effect of balance hole diameter, circumferential position and radial position on expander axial thrust and overall performance. The results indicate that the axial thrust is sensitive to both the balance hole diameter and circumferential position but less sensitive to its radial position, while the overall efficiency is influenced by all three parameters.


2021 ◽  
Author(s):  
Soheila Taghavi ◽  
Einar Gisholt ◽  
Haavard Aakre ◽  
Stian Håland ◽  
Kåre Langaas

Abstract Early water and/or gas breakthrough is one of the main challenges in oil production which results in inefficient oil recovery. Existing mature wells must stop the production and shut down due to high gas oil ratio (GOR) and/or water cut (WC) although considerable amounts of oil still present along the reservoir. It is important to develop technologies that can increase oil production and recovery for marginal, mature, and challenging oil reservoirs. In most fields the drainage mechanism is pressure support from gas and/or water and the multiphase flow performance is particularly important. Autonomous Inflow Control Valve (AICV) can delay the onset of breakthrough by balancing the inflow along the horizontal section and control or shut off completely the unwanted fluid production when the breakthrough occurs. The AICV was tested in a world-leading full-scale multiphase flow loop located in Porsgrunn, Norway. Tests were performed with realistic reservoir conditions, i.e. reservoir pressure and temperature, crude oil, formation water and hydrocarbon gas at various gas oil ratio and water cut in addition to single phase performances. A summary of the flow loop, test conditions, the operating procedures, and test results are presented. In addition, how to represent the well with AICVs in a standard reservoir simulation model are discussed. The AICV flow performance curves for both single phase and multiphase flow are presented, discussed, and compared to conventional Inflow Control Device (ICD) performance. The test results demonstrate that the AICV flow performance is significantly better than conventional ICD. The AICV impact on a simplified model of a thin oil rim reservoir is shown and modelling limitations are discussed. The simulation results along with the experimental results demonstrated considerable benefit of deploying AICV in this thin oil rim reservoir. Furthermore, this paper describes a novel approach towards the application of testing the AICV for use within light oil completion designs and how the AICV flow performance results can be utilized in marginal, mature, and other challenging oil reservoirs.


2019 ◽  
Vol 863 ◽  
Author(s):  
Alessio Roccon ◽  
Francesco Zonta ◽  
Alfredo Soldati

We propose a physically sound explanation for the drag reduction mechanism in a lubricated channel, a flow configuration in which an interface separates a thin layer of less-viscous fluid (viscosity $\unicode[STIX]{x1D702}_{1}$) from a main layer of a more-viscous fluid (viscosity $\unicode[STIX]{x1D702}_{2}$). To single out the effect of surface tension, we focus initially on two fluids having the same density and the same viscosity ($\unicode[STIX]{x1D706}=\unicode[STIX]{x1D702}_{1}/\unicode[STIX]{x1D702}_{2}=1$), and we lower the viscosity of the lubricating layer down to $\unicode[STIX]{x1D706}=\unicode[STIX]{x1D702}_{1}/\unicode[STIX]{x1D702}_{2}=0.25$, which corresponds to a physically realizable experimental set-up consisting of light oil and water. A database comprising original direct numerical simulations of two-phase flow channel turbulence is used to study the physical mechanisms driving drag reduction, which we report between 20 and 30 percent. The maximum drag reduction occurs when the two fluids have the same viscosity ($\unicode[STIX]{x1D706}=1$), and corresponds to the relaminarization of the lubricating layer. Decreasing the viscosity of the lubricating layer ($\unicode[STIX]{x1D706}<1$) induces a marginally decreased drag reduction, but also helps sustaining strong turbulence in the lubricating layer. This led us to infer two different mechanisms for the two drag-reduced systems, each of which is ultimately controlled by the outcome of the competition between viscous, inertial and surface tension forces.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012103
Author(s):  
Feifei Liu

Abstract With the environmental pollution and the shortage of oil resources becoming more and more serious, the development and application of new energy vehicles have attracted more and more attention. Engine is an important part of new energy vehicles, and its performance has a great impact on the vehicle. Compared with traditional industrial motors, new energy vehicle engines have higher requirements on power density, and the improvement of power density poses new challenges to the design of motor cooling system. The purpose of this paper is to study the engine cooling device of new energy vehicles and improve the overall performance of the vehicle. The main research content of this paper is to lay a foundation for the theoretical basis of the engine cooling device, elaborate the working principle of the motor cooling system and the loss of the motor in operation. Then, the heat dissipation system of permanent magnet synchronous motor based on heat pipe is studied experimentally. Aiming at the problem of only considering the temperature rise and ignoring the pressure loss in the flow channel design, a flow channel design method considering the motor temperature rise and the flow channel pressure loss is proposed, and the motor flow channel is optimized. The test results show that the maximum temperature rise at the end is close to 16.56 °C, which is in good agreement with the simulation results. It shows that the heat pipe based heat dissipation system can effectively reduce the temperature rise of motor winding, which provides a new idea for the heat dissipation design of permanent magnet synchronous motor


1999 ◽  
Vol 121 (1) ◽  
pp. 126-132 ◽  
Author(s):  
D. O. Baun ◽  
R. D. Flack

A research pump intended for both flow visualization studies and direct measurement of hydrodynamic radial and axial forces has been developed. The impeller and the volute casing are constructed from Plexiglas which facilitates optical access for laser velocimetry measurements of the flow field both inside the impeller and in the volute casing. The pump housing is designed for flexibility allowing for each interchange of impellers and volute configurations. The pump rotor is supported by three radial magnetic bearings and one double acting magnetic thrust bearing. The magnetic bearings have been calibrated to characterize the force versus coil current and air gap relationship for each bearing type. Linear calibration functions valid for rotor eccentricities of up to 2/3 of the nominal bearing clearances and force level of ±58 N (13 lbf) and ±267 N (60 lbf) for the radial and axial bearings, respectively, were found. A detailed uncertainty analysis of the force calibration functions was conducted such that meaningful uncertainty bounds can be applied to in situ force measurements. Hysteresis and eddy current effects were quantified for each bearing such that their effect on the in situ force measurements could be assessed. By directly measuring the bearing reaction forces it is possible to determine the radial and axial hydraulic loads acting on the pump impeller. To demonstrate the capability of the magnetic bearings as active load cells representative hydraulic force measurements for a centered 4 vane 16 degree log spiral radial flow impeller operating in a single tongue spiral volute casing were made. At shut-off a nondimensional radial thrust of 0.084 was measured. A minimum nondimensional radial thrust of about 0.007 was observed at the nominal design flow. The nondimensional radial thrust increased to about 0.019 at 120 percent of design flow. The nondimensional axial thrust had a maximum at shut-off of 0.265 and decreased steadily to approximately 0.185 at 120 percent of design flow. Two regions of increasing axial thrust, in the flow range 75 to 100 percent of design flow, were observed. The measurements are compared to radial and axial force predictions using classical force models. The direct radial force measurements are compared to a representative set of radial force measurements from the literature. In addition, the directly measured radial force at design flow is compared to a single representative radial force measurement (obtained from the literature) calculated from the combination of static pressure and net momentum flux distribution at the impeller exit.


Author(s):  
Henrique Stel ◽  
Thiago Sirino ◽  
Pamella R. Prohmann ◽  
Francisco Ponce ◽  
Sergio Chiva ◽  
...  

Electric Submersible Pumps (ESP’s) are multistage pump arrangements used in offshore petroleum production. Most of their applications are subject to viscous oil pumping, which causes performance degradation with respect to the regular service with water and changes some characteristics related to the flow dynamics inside the pump. The purpose of this work is to use CFD to investigate numerically the flow in a semi-axial type ESP with three stages operating with fluids of different viscosities. Both design and off-design flow rates are simulated, as well as different impeller rotation speeds. Head curves of the ESP for these cases are compared with experimental data and show good agreement. The importance of considering more than a single stage when studying ESP’s is discussed. The flow fields inside the pump channels for different operating conditions are compared, showing for instance that the flow is not always blade-oriented at the best efficiency point for service with fluids more viscous than water. The effect of the fluid viscosity and the rotation speed on the performance degradation is also explored. In addition, dimensional analysis is used in favor of a better understanding on how the pump performance degrades when working out of the design figure.


Sign in / Sign up

Export Citation Format

Share Document