Computer Simulation of Dynamical Behavior of Self-Propelled Gurney

Author(s):  
Wieslaw M. Szydlowski ◽  
Srinivas Sastry

Abstract The conventional gurneys used in hospitals to move patients from room to room have one main disadvantage: they are difficult to control. A typical gurney has a form of an oblong table moving on four castor wheels. The vehicle is difficult to maneuver, especially on corridor turns, and usually requires two operators — each at one end. Dr. J. Bleicher from the St. Joseph’s Hospital in Omaha, Nebraska suggested a new type of a self-propelled gurney which would be a cross-breed of a motorized wheelchair and a gurney. A new type of a gurney would have two additional wheels in the center of the gurney, each connected to a separate DC motor. The torques developed by the motors would be controlled by one operator using a joystick. Applying opposite torques to the controlled wheels would rotate a stationary gurney in place, or would curve the path of a moving gurney. The position of two additional wheels can be changed, so that the gurney can move sideways, translate in chosen direction or move along a curvelinear path. The work presented in the paper contains an analysis of the dynamics of such a gurney. A mathematical model of the vehicle was developed to check how much effort is needed on the part of the operator in straight path motion and during negotiating a corner. The most difficult part of the modelling was a proper description of forces and torques exerted by the ground on the wheels. The differential equations of motion of the gurney have been numerically integrated, and the dynamical response of the vehicle studied. The results of the computer simulation show a transient oscillatory response of the castor wheels (shimmying) which can be controlled by a proper choice of design parameters of the vehicle.

2019 ◽  
Vol 31 (2) ◽  
pp. 198-208 ◽  
Author(s):  
Chulhee Han ◽  
Bo-Gyu Kim ◽  
Byung-Hyuk Kang ◽  
Seung-Bok Choi

In this research, a new type of magnetorheological damper for a small-sized aircraft landing gear system is proposed and its performance is evaluated with respect to design parameters of the magnetic core. As a first step, a new configuration of magnetorheological damper for the landing gear system, which consists of orifices, recoil valve, and magnetic circuits, is introduced with working principles. After formulating the governing equations of motion, six different models of magnetorheological damper featuring different number of magnetic core and different pole length are chosen to investigate both the landing stability and the efficiency. Subsequently, the distribution of the magnetic field intensity of each model is analyzed through the finite element method, followed by the calculation of the field-dependent damping force to be used for the landing simulation, which is undertaken by adopting the dynamic model of a half airplane landing gear system. In order to identify the significance of the magnetic core parameters, the landing stability is judged from the sign of the minimum force and the landing efficiency is determined from the energy dissipation during the vertical drop motion.


Author(s):  
B. K. Lee

Abstract This paper presents the dynamic response and analysis of a dynamic resistor in a rotating system which is sensitive to the vibration of the rotating system. The sensitivity of the dynamic resistor is adjusted in order to stabilize the rotating system when acted upon by various excitation input functions. The equations of motion of the dynamic resistor and the rotating system, derived by the use of the energy method, result in coupled nonlinear differential equations, and the response of the dynamic resistor is highly correlated to the vibration of the rotating system. In this paper, the derivation of equations of motion of the dynamic resistor and the rotating system and their dynamic responses are analyzed in order to determine the optimal design parameters that provide stability for the rotating system when it is excited by external input forcing functions. The dynamic response is obtained both by experimental data and computer simulation. The experimental data indicate that the sensitivity of the dynamic resistor is related to the vibrating response of the rotating system and the rotational system parameters including the natural frequency. The dynamic response obtained by computer simulation is compared with the experimental data. The computer simulation results are to be used to determine the optimal values of the parameters of the dynamic resistor with respect to the rotating system. The uniqueness of this system is that the dynamic resistor is completely isolated from other inputs except the rotational vibration of the rotating system. The conclusions include recommendations and areas for future research.


2021 ◽  
pp. 107754632199358
Author(s):  
Ali Fasihi ◽  
Majid Shahgholi ◽  
Saeed Ghahremani

The potential of absorbing and harvesting energy from a two-degree-of-freedom airfoil using an attachment of a nonlinear energy sink and a piezoelectric energy harvester is investigated. The equations of motion of the airfoil coupled with the attachment are solved using the harmonic balance method. Solutions obtained by this method are compared to the numerical ones of the pseudo-arclength continuation method. The effects of parameters of the integrated nonlinear energy sink-piezoelectric attachment, namely, the attachment location, nonlinear energy sink mass, nonlinear energy sink damping, and nonlinear energy sink stiffness on the dynamical behavior of the airfoil system are studied for both subcritical and supercritical Hopf bifurcation cases. Analyses demonstrate that absorbing vibration and harvesting energy are profoundly affected by the nonlinear energy sink parameters and the location of the attachment.


2011 ◽  
Vol 71-78 ◽  
pp. 4634-4637
Author(s):  
Tian Lin Cui ◽  
Jing Kun Pi ◽  
Yong Hui Liu ◽  
Zhen Hua He

In order to optimize the design of flexible pressurized anchor, this paper gives a further analysis on structural features of the new type of flexible pressurized anchor and carries out a contact analysis on anchor system by using the finite element method. It calculates as well as researches the contact stress relation of interactional anchor rod and surrounding rock under the circumstance of anchoring, obtaining the law of all major design parameters of anchor rod structure and pressure from surrounding rock influencing the anchoring performance and arriving at the conclusion that the anchor rod is adapted to various conditions of surrounding rock. They not only serve as important references for optimized design and application of anchor rod, but also provide a basis for the experiment of new type of anchor rod.


Author(s):  
Hashem Ashrafiuon

Abstract This paper presents the effect of foundation flexibility on the optimum design of vibration absorbers. Flexibility of the base is incorporated into the absorber system equations of motion through an equivalent damping ratio and stiffness value in the direction of motion at the connection point. The optimum values of the uncoupled natural frequency and damping ratio of the absorber are determined over a range of excitation frequencies and the primary system damping ratio. The design parameters are computed and compared for the rigid, static, and dynamic models of the base as well as different levels of base flexibility.


Author(s):  
L. T. Wang

Abstract A new method of formulating the generalized equations of motion for simple-closed (single loop) spatial linkages is presented in this paper. This method is based on the generalized principle of D’Alembert and the use of the transformation Jacobian matrices. The number of the differential equations of motion is minimized by performing the method of generalized coordinate partitioning in the joint space. Based on this formulation, a computational algorithm for computer simulation the dynamic motions of the linkage is developed, this algorithm is not only numerically stable but also fully exploits the efficient recursive computational schemes developed earlier for open kinematic chains. Two numerical examples are presented to demonstrate the stability and efficiency of the algorithm.


Author(s):  
Scott R. Moisik ◽  
John H. Esling

Purpose Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling. Method The dynamical response of a low-dimensional, lumped-element model of the vocal folds under the influence of vocal–ventricular fold coupling was evaluated. The model was assessed for F0 and cover-mass phase difference. Case studies of simulations of different constricted phonation types and of glottal stop illustrate various additional aspects of model performance. Results Simulated vocal–ventricular fold coupling lowers F0 and perturbs the mucosal wave. It also appears to reinforce irregular patterns of oscillation, and it can enhance laryngeal closure in glottal stop production. Conclusion The effects of simulated vocal–ventricular fold coupling are consistent with sounds, such as creaky voice, harsh voice, and glottal stop, that have been observed to involve epilaryngeal stricture and apparent contact between the vocal folds and ventricular folds. This supports the view that vocal–ventricular fold coupling is important in the vibratory dynamics of such sounds and, furthermore, suggests that these sounds may intrinsically require epilaryngeal stricture.


Author(s):  
Tingting Wei ◽  
Dengji Zhou ◽  
Jinwei Chen ◽  
Yaoxin Cui ◽  
Huisheng Zhang

Since the late 1930s, gas turbine has begun to develop rapidly. To improve the economic and safety of gas turbine, new types were generated frequently by Original Equipment Manufacture (OEM). In this paper, a hybrid GRA-SVM prediction model is established to predict the main design parameters of new type gas turbines, based on the combination of Grey Relational Analysis (GRA) and Support Vector Machine (SVM). The parameters are classified into two types, system performance parameters reflecting market demands and technology development, and component performance parameters reflecting technology development and coupling connections. The regularity based on GRA determines the prediction order, then new type gas turbine parameters can be predicted with known system parameters. The model is verified by the application to SGT600. In this way, the evolution rule can be obtained with the development of gas turbine technology, and the improvement potential of several components can be predicted which will provide supports for overall performance design.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ren Yongsheng ◽  
Zhang Xingqi ◽  
Liu Yanghang ◽  
Chen Xiulong

The dynamical analysis of a rotating thin-walled composite shaft with internal damping is carried out analytically. The equations of motion are derived using the thin-walled composite beam theory and the principle of virtual work. The internal damping of shafts is introduced by adopting the multiscale damping analysis method. Galerkin’s method is used to discretize and solve the governing equations. Numerical study shows the effect of design parameters on the natural frequencies, critical rotating speeds, and instability thresholds of shafts.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950039
Author(s):  
J. Leonel Rocha ◽  
Abdel-Kaddous Taha

This paper concerns the study of the Allee effect on the dynamical behavior of a new class of generalized logistic maps. The fundamentals of the dynamics of this 4-parameter family of one-dimensional maps are presented. A complete classification of the nature and stability of its fixed points is provided. The main results relate to the Allee effect bifurcation: a new type of bifurcation introduced for this class of unimodal maps. A necessary and sufficient condition so that the Allee fixed point is a snap-back repeller is established. In addition, in the parameters space is defined an Allee’s effect region, which determines the existence of an essential extinction for the generalized logistic maps. Local and global bifurcations of generalized logistic maps are investigated.


Sign in / Sign up

Export Citation Format

Share Document