Effects of Uncertainty Reduction on Weight of Composite Laminates at Cryogenic Temperatures

Author(s):  
Erdem Acar ◽  
Raphael T. Haftka ◽  
Theodore F. Johnson

The effect of uncertainty reduction measures on the weight of laminates for cryogenic temperatures is investigated. The uncertainties in the problem are classified as error and variability. Probabilistic design is carried out to analyze the effect of reducing the uncertainty on the weight. For demonstration, variability reduction takes the form of quality control, while error is reduced by including the effect of chemical shrinkage in the analysis. It is found that the use of only error control leads to 12% weight reduction, the use of only quality control leads to 20% weight savings and the use of error and variability control measures together reduces the weight by 37%. In addition, the paper also investigates how to improve the accuracy and efficiency of probability of failure calculations (performed using Monte Carlo simulation technique). Approximating the cumulative distribution functions for strains is shown to lead to more accurate probability of failure estimations than the use of response surface approximations for strains.

2006 ◽  
Vol 129 (3) ◽  
pp. 266-274 ◽  
Author(s):  
Erdem Acar ◽  
Raphael T. Haftka ◽  
Theodore F. Johnson

Inspired by work on allocating risk between the different components of a system for a minimal cost, we explore the optimal allocation of uncertainty in a single component. The tradeoffs of uncertainty reduction measures on the weight of structures designed for reliability are explored. The uncertainties in the problem are broadly classified as error and variability. Probabilistic design is carried out to analyze the effect of reducing error and variability on the weight. As a demonstration problem, the design of composite laminates at cryogenic temperatures is chosen because the design is sensitive to uncertainties. For illustration, variability reduction takes the form of quality control, while error is reduced by including the effect of chemical shrinkage in the analysis. Tradeoff plots of uncertainty reduction measures, probability of failure and weight are generated that could allow choice of optimal uncertainty control measure combination to reach a target probability of failure with minimum cost. In addition, the paper also compares response surface approximations to direct approximation of a probability distribution for efficient estimation of reliability.


2021 ◽  
pp. 074823372110195
Author(s):  
Fatemeh Dehghani ◽  
Fariborz Omidi ◽  
Reza Ali Fallahzadeh ◽  
Bahman Pourhassan

The present work aimed to evaluate the health risks of occupational exposure to heavy metals in a steel casting unit of a steel plant. To determine occupational exposure to heavy metals, personal air samples were taken from the workers’ breathing zones using the National Institute for Occupational Safety and Health method. Noncancer and cancer risks due to the measured metals were calculated according to the United States Environmental Protection Agency procedures. The results indicated that the noncancer risks owing to occupational exposure to lead (Pb) and manganese were higher than the recommended value in most of the workstations. The estimated cancer risk of Pb was also higher than the allowable value. Moreover, the results of sensitivity analysis indicated that the concentration, inhalation rate, and exposure duration were the most influencing variables contributing to the calculated risks. It was thus concluded that the present control measures were not adequate and further improvements were required for reducing the exposure levels.


2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Soi Ahn ◽  
Sung-Rae Chung ◽  
Hyun-Jong Oh ◽  
Chu-Yong Chung

This study aimed to generate a near real time composite of aerosol optical depth (AOD) to improve predictive model ability and provide current conditions of aerosol spatial distribution and transportation across Northeast Asia. AOD, a proxy for aerosol loading, is estimated remotely by various spaceborne imaging sensors capturing visible and infrared spectra. Nevertheless, differences in satellite-based retrieval algorithms, spatiotemporal resolution, sampling, radiometric calibration, and cloud-screening procedures create significant variability among AOD products. Satellite products, however, can be complementary in terms of their accuracy and spatiotemporal comprehensiveness. Thus, composite AOD products were derived for Northeast Asia based on data from four sensors: Advanced Himawari Imager (AHI), Geostationary Ocean Color Imager (GOCI), Moderate Infrared Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS). Cumulative distribution functions were employed to estimate error statistics using measurements from the Aerosol Robotic Network (AERONET). In order to apply the AERONET point-specific error, coefficients of each satellite were calculated using inverse distance weighting. Finally, the root mean square error (RMSE) for each satellite AOD product was calculated based on the inverse composite weighting (ICW). Hourly AOD composites were generated (00:00–09:00 UTC, 2017) using the regression equation derived from the comparison of the composite AOD error statistics to AERONET measurements, and the results showed that the correlation coefficient and RMSE values of composite were close to those of the low earth orbit satellite products (MODIS and VIIRS). The methodology and the resulting dataset derived here are relevant for the demonstrated successful merging of multi-sensor retrievals to produce long-term satellite-based climate data records.


Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Thabet Abdeljawad ◽  
Saima Rashid ◽  
Zakia Hammouch ◽  
İmdat İşcan ◽  
Yu-Ming Chu

Abstract The present article addresses the concept of p-convex functions on fractal sets. We are able to prove a novel auxiliary result. In the application aspect, the fidelity of the local fractional is used to establish the generalization of Simpson-type inequalities for the class of functions whose local fractional derivatives in absolute values at certain powers are p-convex. The method we present is an alternative in showing the classical variants associated with generalized p-convex functions. Some parts of our results cover the classical convex functions and classical harmonically convex functions. Some novel applications in random variables, cumulative distribution functions and generalized bivariate means are obtained to ensure the correctness of the present results. The present approach is efficient, reliable, and it can be used as an alternative to establishing new solutions for different types of fractals in computer graphics.


2011 ◽  
Vol 18 (2) ◽  
pp. 223-234 ◽  
Author(s):  
R. Haas ◽  
K. Born

Abstract. In this study, a two-step probabilistic downscaling approach is introduced and evaluated. The method is exemplarily applied on precipitation observations in the subtropical mountain environment of the High Atlas in Morocco. The challenge is to deal with a complex terrain, heavily skewed precipitation distributions and a sparse amount of data, both spatial and temporal. In the first step of the approach, a transfer function between distributions of large-scale predictors and of local observations is derived. The aim is to forecast cumulative distribution functions with parameters from known data. In order to interpolate between sites, the second step applies multiple linear regression on distribution parameters of observed data using local topographic information. By combining both steps, a prediction at every point of the investigation area is achieved. Both steps and their combination are assessed by cross-validation and by splitting the available dataset into a trainings- and a validation-subset. Due to the estimated quantiles and probabilities of zero daily precipitation, this approach is found to be adequate for application even in areas with difficult topographic circumstances and low data availability.


Sign in / Sign up

Export Citation Format

Share Document