Influence of Pedaling Rate on Muscle Mechanical Energy in Low Power Recumbent Pedaling Using Forward Dynamic Simulations

Author(s):  
Nils A. Hakansson ◽  
Maury L. Hull

An understanding of the muscle power contributions to the crank and limb segments in recumbent pedaling would be useful in the development of rehabilitative pedaling exercises. The objectives of this work were to (i) develop a forward dynamic model to simulate low-power pedaling in the recumbent position, (ii) use the model to quantify the power contributions of the muscles to driving the crank and limb segments, and (iii) determine whether there were differences in the muscle power contributions required to simulate recumbent pedaling at three different pedaling rates. A forward dynamic model was used to determine the individual muscle excitation amplitude and timing to drive simulations that best replicated experimental kinematics and kinetics of recumbent pedaling. The segment kinematics, pedal reaction forces, and electromyograms (EMG) of 10 muscles of the right leg were recorded from 16 subjects as they pedaled a recumbent ergometer at 40, 50, and 60 rpm and a constant 50 W workrate. Intersegmental joint moments were computed using inverse dynamics and the muscle excitation onset and offset timing were determined from the EMG data. All quantities were averaged across ten cycles for each subject and averaged across subjects. The model-generated kinematic and kinetic quantities tracked almost always within 1 SD of the experimental data for all three pedaling rates. The uniarticular hip and knee extensors generated 65 percent of the total mechanical work in recumbent pedaling. The triceps surae muscles transferred power from the limb segments to the crank and the bi-articular muscles that crossed the hip and knee delivered power to the crank during the leg transitions between flexion and extension. The functions of the individual muscles did not change with pedaling rate, but the mechanical energy generated by the knee extensors and hip flexors decreased as pedaling rate increased. By varying the pedaling rate, it is possible to manipulate the individual muscle power contributions to the crank and limb segments in recumbent pedaling and thereby design rehabilitative pedaling exercises to meet specific objectives.

2002 ◽  
Vol 205 (3) ◽  
pp. 379-389 ◽  
Author(s):  
A. N. Ahn ◽  
R. J. Full

SUMMARYThe individual muscles of a multiple muscle group at a given joint are often assumed to function synergistically to share the load during locomotion. We examined two leg extensors of a running cockroach to test the hypothesis that leg muscles within an anatomical muscle group necessarily manage (i.e. produce, store, transmit or absorb) energy similarly during running. Using electromyographic and video motion-analysis techniques, we determined that muscles 177c and 179 are both active during the first half of the stance period during muscle shortening. Using the in vivo strain and stimulation patterns determined during running, we measured muscle power output. Although both muscles were stimulated during the first half of shortening, muscle 177c generated mechanical energy (28 W kg–1) like a motor, while muscle 179 absorbed energy (–19 W kg–1) like a brake. Both muscles exhibited nearly identical intrinsic characteristics including similar twitch kinetics and force–velocity relationships. Differences in the extrinsic factors of activation and relative shortening velocity caused the muscles to operate very differently during running. Presumed redundancy in a multiple muscle group may, therefore, represent diversity in muscle function. Discovering how muscles manage energy during behavior requires the measurement of a large number of dynamically interacting variables.


Robotica ◽  
1989 ◽  
Vol 7 (2) ◽  
pp. 165-168 ◽  
Author(s):  
A. Bodner

SUMMARYA method was developed that takes into account flexibility of robot links in the inverse dynamics calculations. This method uses the Newton-Euler equations and is applicable for special case systems that allow for only a small degree of flexibility. Application of the method should improve the accuracy of the position of the end effector during motion of the robot.The results of this study show that the method can be based entirely on an existing rigid-link model with only minimal changes required as additions. The computational complexity of the method is discussed briefly as well and indicates an increase of computations of slightly more than a factor of two as compared to a rigid-link model for the same robot geometry.


2004 ◽  
Vol 127 (2) ◽  
pp. 301-310 ◽  
Author(s):  
Nils A. Hakansson ◽  
M. L. Hull

An understanding of the coordination of the leg muscles in recumbent pedaling would be useful to the design of rehabilitative pedaling exercises. The objectives of this work were to (i) determine whether patterns of muscle activity while pedaling in the recumbent and upright positions are similar when the different orientation in the gravity field is considered, (ii) compare the functional roles of the leg muscles while pedaling in the recumbent position to the upright position to the upright position and (iii) determine whether leg muscle onset and offset timing for recumbent and upright pedaling respond similarly to changes in pedaling rate. To fulfill these objectives, surface electromyograms were recorded from 10 muscles of 15 subjects who pedaled in both the recumbent and upright positions at 75, 90, and 105rpm and at a constant workrate of 250W. Patterns of muscle activation were compared over the crank cycle. Functional roles of muscles in recumbent and upright pedaling were compared using the percent of integrated activation in crank cycle regions determined previously for upright pedaling. Muscle onset and offset timing were also compared. When the crank cycle was adjusted for orientation in the gravity field, the activation patterns for the two positions were similar. Functional roles of the muscles in the two positions were similar as well. In recumbent pedaling, the uniarticular hip and knee extensors functioned primarily to produce power during the extension region of the crank cycle, whereas the biarticular muscles crossing the hip and knee functioned to propel the leg through the transition regions of the crank cycle. The adaptations of the muscles to changes in pedaling rate were also similar for the two body positions with the uniarticular power producing muscles of the hip and knee advancing their activity to earlier in the crank cycle as the pedaling rate increased. This information on the functional roles of the leg muscles provides a basis by which to form functional groups, such as power-producing muscles and transition muscles, to aid in the development of rehabilitative pedaling exercises and recumbent pedaling simulations to further our understanding of task-dependent muscle coordination.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2019 ◽  
Vol 287 ◽  
pp. 03005
Author(s):  
Jan Furch ◽  
Cao Vu Tran

The combat vehicle gearbox, during the operation, generates vibration signals being related to the technical condition of gearbox. The analysis of the vibration signal could be used to determine accurately the behaviour of gearbox. Along with the development of the computer technology, the multi-body dynamic solution has been used widely to simulate, analyse, and determine the technical condition of gearbox. The purpose of this paper is to introduce the dynamic model of combat vehicle gearbox, and the simulation process based on the multi-body dynamic software, namely MSC.ADAMS. This proposed model allows the detection of failure conditions of individual gears and bearings in the gearbox. In this way, the fault conditions of the individual transmission components are identified. In the future, we would like to include a material wear module in the model, and we would like to model the life of the gearbox. We assume that we would also carry out accelerated tests of the gearbox to verify validity.


2019 ◽  
Vol 24 (5) ◽  
pp. 2406-2415 ◽  
Author(s):  
Samira Asiri ◽  
Farshad Khademianzadeh ◽  
Amirhassan Monadjemi ◽  
Payman Moallem

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 765 ◽  
Author(s):  
Alessandro Zompanti ◽  
Marco Santonico ◽  
Luca Vollero ◽  
Simone Grasso ◽  
Anna Sabatini ◽  
...  

The technological development of the last few years in the field of integrated electronic components has encouraged the use of wearable electronic devices. In the biomedical field, this improvement allows the registration and analysis of numerous values, starting from environmental parameters up to the vital parameters of a subject, without interfering with the normal daily activities of the individual. In this context, the present work is focused on the design, development and evaluation of a low power wearable and wireless electronic interface able to acquire and transmit signals generated by a gas sensor, based on electrochemical technology, to monitor air quality through the measurement of O2 and CO2 concentration. Among the existing wireless technologies, it was decided to use Bluetooth Low Energy (BLE) as it allows data transmission to multiple types of external devices, such as PCs and smartphones with low power consumption.


2020 ◽  
Vol 27 (1) ◽  
pp. 93-100
Author(s):  
Rajesh Kumar Mohanty ◽  
Jay Prakash Kumar ◽  
Somanath Rout ◽  
Sakti Prasad Das

Background: Intensive rehabilitation of individuals with bilateral lower limb loss poses a great challenge to both rehabilitation team and amputees themselves due to unavailability of a sound leg to provide stability in standing and gait. Although gait characteristics of individuals with unilateral transtibial amputations are well documented in the literature, very less is known about those with bilateral limb loss. Aim: To examine the gait characteristics of an individual with bilateral transtibial amputation (BTA) and its comparison with an able-bodied (AB). This study also provides a real-life presentation of successful prosthetic rehabilitation. Case content and methodology: Temporal–spatial, kinematic and kinetic gait parameters were analysed for a 45-year-old male individual with traumatic BTA using prosthesis in a motion analysis laboratory setting with force platform (BTS P-6000) and cameras with reflective markers (BTS SMART-DX6000). Findings and conclusion: Variances in many temporal–spatial, kinematic and kinetic parameters were observed. The findings of temporal–spatial parameters revealed that the individual with BTA walked with slower speed, lower cadence, shorter step lengths and wider step width compared to that of AB. Ankle dorsiflexion, stance knee flexion and swing hip hiking were reduced in an individual with BTA compared to AB. In kinetics, he demonstrated low peak ankle muscle power, increased muscle power amplitudes and phase duration at the hip and knee joints compared to AB individual. The combination of an intensive prosthetic rehabilitation led to completely independent and remarkable degree of functional ambulation.


Sign in / Sign up

Export Citation Format

Share Document