Synthesis of Demand Signals for High Speed Operation of a Packaging Mechanism

Author(s):  
M. Necip Sahinkaya ◽  
Robert M. C. Rayner ◽  
Geoff Vernon ◽  
Graham Shirley ◽  
Raj K. Aggarwal

The aim of the work described in this paper is to improve the dynamic performance of a one-degree-of-freedom packaging mechanism through demand signal shaping to minimize the peak to peak motor torque. This enables the mechanism to operate at higher speeds with lower vibration and noise levels, and hence with higher accuracy. Initial experimental tests have shown the motion of the Woodpecker mechanism to suffer from dynamic, vibration problems synonymous with a mechanism possessing large amounts of harmonic content in its output motion. The dynamics of the Woodpecker mechanism and the accompanying servo system are developed and the likely causes of the dynamic issues experienced are identified. A computer model of the complete system drive unit is developed utilizing experimental data. The intention is to use the model in further detailed analytical work to shape the velocity demand signal passed to the system. Inverse dynamics are used to derive the variation in driving torque, which must be exerted on the mechanism crank by the drive motor for the mechanism to achieve a constant speed over the complete cycle. Based on the computer model, a novel technique to shape the speed demand signal is developed and it is shown that significant performance improvements can be achieved without re-synthesizing the mechanism or altering the existing industrial controller.

2018 ◽  
Vol 10 (4) ◽  
Author(s):  
Xin-Jun Liu ◽  
Gang Han ◽  
Fugui Xie ◽  
Qizhi Meng ◽  
Sai Zhang

Driving system parameters optimization, especially the optimal selection of specifications of motor and gearbox, is very important for improving high-speed parallel robots' performance. A very challenging issue is parallel robots' performance evaluation that should be able to illustrate robots' performance accurately and guide driving system parameters optimization effectively. However, this issue is complicated by parallel robots' anisotropic translational and rotational dynamic performance, and the multiparameters of motors and gearboxes. In this paper, by separating the influence of translational and rotational degrees-of-freedom (DOFs) on robots' performance, a new dynamic performance index is proposed to reflect the driving torque in instantaneous acceleration. Then, the influence of driving system's multiparameters on robots' driving torque in instantaneous acceleration and cycle time in continuous motion is investigated. Based on the investigation, an inertia matching index is further derived which is more suitable for minimizing the driving torque of parallel robots with translational and rotational DOFs. A comprehensive parameterized performance atlas is finally established. Based on this atlas, the performance of a high-speed parallel robot developed in this paper can be clearly evaluated, and the optimal combination of motors and gearboxes can be quickly selected to ensure low driving torque and high pick-and-place frequency.


Author(s):  
Robert Rayner ◽  
M. Necip Sahinkaya ◽  
Ben Hicks

This paper describes a unique, computer-based, mechanism design strategy that takes into account both kinematic and dynamic performance criteria at the synthesis stage of the design process. The strategy can be used to investigate improvements in the design of any existing mechanism with geometric redundancy in its output path. By iteratively varying the form of this redundant portion of the output path, alternative potentially better mechanism designs can be generated using a traditional mechanism synthesis and kinematic analysis method. The generated designs with the most desirable kinematic characteristics can be selected and analyzed using a multi-body, dynamic modeling and analysis tool. Using forward and inverse dynamic analysis the quality of the designs can be quantified. This paper describes work done to apply the strategy to an existing mechanism. An alternative mechanism design was identified with superior dynamic qualities. Kinematic performance was not sacrificed.


2012 ◽  
Vol 189 ◽  
pp. 281-284
Author(s):  
Jian Qiang Xiong ◽  
Ju Hua Huang ◽  
Liao Qun

Analysis of vehicle ride comfort mainly refers to the vibration and shock environment impact on occupant comfort within certain limits, which will not make people feel comfortable, fatigue and even damage to health performance. Therefore, ride comfort is evaluated mainly based on subjective feelings of the crew, but also for the truck to maintain the performance of the goods in good condition; it is the main performance of modern high-speed car vehicle. The paper proposed a simulation modeling of the vehicle in ADAMS based on the multi-body dynamics theory; we made analysis of vehicle ride comfort on a random road. The result presents the process of building vehicle model and analysis of ride comfort and provides a basis for optimization of vehicle parameters. With this optimized design, the vibration of the vehicle has very significant performance improvements.


Author(s):  
Dario Buono ◽  
Adolfo Senatore ◽  
Emma Frosina ◽  
Wade Gehlhoff ◽  
Ina I. Costin

This paper describes the design, simulation and testing of a high response servo-proportional valve. The purpose of this work is to study the possibilities, using a modeling technology, to increase the dynamic performance of a servo-proportional directional developing new algorithms for the digital control system. The development of digital technology, introduced also in the control of proportional valves, have led to the reduction of the differences between the overall characteristics of proportional and servo valves so that the proportional ones can be a suitable solution in many applications, where servo-valves are traditionally used. The mathematical model of the servo-proportional valve has been developed by using the commercial software AMESim® (Advanced Modeling and Simulation Environment for Systems Engineering). The model includes the proportional solenoid and the linear transducer. Digital control of the proportional valve proposed in this paper, is a key part of this research. Its mathematical model and the control algorithm have been built using Matlab®. Both models have been run in co-simulation to improve the overall valve performance. The experimental tests have been performed in the labs of Duplomatic Oleodinamica SpA and Continental Hydraulic Inc. The data have been used to validate the simulation models.


2021 ◽  
Vol 10 (4) ◽  
pp. 146-159
Author(s):  
Qusay Idrees Sarhan

Java is one of the most demanding programming languages nowadays and it is used for developing a wide range of software applications including desktop, mobile, embedded, and web applications. Writing efficient Java codes for those various types of applications (which some are critical and time-sensitive) is crucial and recommended best practices that every Java developer should consider. To date, there is a lack of in-depth experimental studies in the literature that evaluate the impact of writing efficient Java programming strategies on the performance of desktop applications in terms of runtime. Thus, this paper aims to perform a variety of experimental tests that have been carefully chosen and implemented to evaluate the most important aspects of desktop efficient Java programming in terms of runtime. The results of this study show that significant performance improvements can be achieved by applying different programming strategies.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


Author(s):  
Francisco Lamas ◽  
Miguel A. M. Ramirez ◽  
Antonio Carlos Fernandes

Flow Induced Motions are always an important subject during both design and operational phases of an offshore platform life. These motions could significantly affect the performance of the platform, including its mooring and oil production systems. These kind of analyses are performed using basically two different approaches: experimental tests with reduced models and, more recently, with Computational Fluid Dynamics (CFD) dynamic analysis. The main objective of this work is to present a new approach, based on an analytical methodology using static CFD analyses to estimate the response on yaw motions of a Tension Leg Wellhead Platform on one of the several types of motions that can be classified as flow-induced motions, known as galloping. The first step is to review the equations that govern the yaw motions of an ocean platform when subjected to currents from different angles of attack. The yaw moment coefficients will be obtained using CFD steady-state analysis, on which the yaw moments will be calculated for several angles of attack, placed around the central angle where the analysis is being carried out. Having the force coefficients plotted against the angle values, we can adjust a polynomial curve around each analysis point in order to evaluate the amplitude of the yaw motion using a limit cycle approach. Other properties of the system which are flow-dependent, such as damping and added mass, will also be estimated using CFD. The last part of this work consists in comparing the analytical results with experimental results obtained at the LOC/COPPE-UFRJ laboratory facilities.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1639
Author(s):  
Seungmin Jung ◽  
Jihoon Moon ◽  
Sungwoo Park ◽  
Eenjun Hwang

Recently, multistep-ahead prediction has attracted much attention in electric load forecasting because it can deal with sudden changes in power consumption caused by various events such as fire and heat wave for a day from the present time. On the other hand, recurrent neural networks (RNNs), including long short-term memory and gated recurrent unit (GRU) networks, can reflect the previous point well to predict the current point. Due to this property, they have been widely used for multistep-ahead prediction. The GRU model is simple and easy to implement; however, its prediction performance is limited because it considers all input variables equally. In this paper, we propose a short-term load forecasting model using an attention based GRU to focus more on the crucial variables and demonstrate that this can achieve significant performance improvements, especially when the input sequence of RNN is long. Through extensive experiments, we show that the proposed model outperforms other recent multistep-ahead prediction models in the building-level power consumption forecasting.


Cryogenics ◽  
2021 ◽  
pp. 103321
Author(s):  
Yuhang Yuan ◽  
Jipeng Li ◽  
Zigang Deng ◽  
Zhehao Liu ◽  
Dingding Wu ◽  
...  

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Artur Andrearczyk ◽  
Bartlomiej Konieczny ◽  
Jerzy Sokołowski

This paper describes a novel method for the experimental validation of numerically optimised turbomachinery components. In the field of additive manufacturing, numerical models still need to be improved, especially with the experimental data. The paper presents the operational characteristics of a compressor wheel, measured during experimental research. The validation process included conducting a computational flow analysis and experimental tests of two compressor wheels: The aluminium wheel and the 3D printed wheel (made of a polymer material). The chosen manufacturing technology and the results obtained made it possible to determine the speed range in which the operation of the tested machine is stable. In addition, dynamic destructive tests were performed on the polymer disc and their results were compared with the results of the strength analysis. The tests were carried out at high rotational speeds (up to 120,000 rpm). The results of the research described above have proven the utility of this technology in the research and development of high-speed turbomachines operating at speeds up to 90,000 rpm. The research results obtained show that the technology used is suitable for multi-variant optimization of the tested machine part. This work has also contributed to the further development of numerical models.


Sign in / Sign up

Export Citation Format

Share Document