Rotordynamic Analysis of a Rotor-Disk System Including a Synchronously Reduced Modal Truncation Method

Author(s):  
Timothy Dimond ◽  
Jawad Chaudhry ◽  
Matthew Wagner ◽  
Feng He ◽  
Jianming Cao ◽  
...  

There are many published works on rotordynamics which detail the types of analyses that are carried out: critical speeds, stability assessment, and forced response. The purpose of this paper is to present a more complete analysis of an existing, academic rotor/bearing model, taken from a textbook, more like it would be carried out in an industrial setting. The advantage is that all parameters of the rotor model are well known so that there are minimal uncertainties. However, some published papers on rotordynamics, as discussed in this work, present an incomplete analysis. For example, they may report the calculated critical speeds but leave out the critical speed plot and mode shapes in favor of the Campbell diagram. They may model a Bernoulli Euler beam model of the shaft and neglect the additional terms in the Timoshenko beam model. These papers may show some unbalance response plots for one disk in the model but not report on the amplification factor. This paper gives a much more complete rotordynamics analysis of this common rotor/bearing model than other works. The full undamped rotor analysis is presented, including critical speeds, critical speed map, and undamped mode shapes. The stability analysis presents the full set of eigenvalues including both forward and backward modes as well as the complex mode shapes. The differences between the Bernoulli Euler beam model and the full Timoshenko beam model are shown for this rotor. Full unbalance response plots, in the horizontal and vertical directions, are presented as well as the response along the semi-major axis. The unbalance response plots have calculated amplitudes, phase angles and amplification factors. In addition to the standard rotordynamic analyses, a synchronously reduced modal truncation method is presented. This method is better suited to automation, when compared to most truncation methods that require significant intervention by the analyst. The maximum error was on the order of 0.01%. It is hoped that future publications will present the more complete analysis shown for this rotor/bearing system.

Author(s):  
Jawad Chaudhry ◽  
Tim Dimond ◽  
Amir Younan ◽  
Paul Allaire

A large alternator/flywheel/motor train is employed as part of the power system for the ALCATOR C-MOD experiment at the MIT Plasma Fusion Center. The alternator is used to provide peak pulse power of 100 MW to the magnets employed in the fusion experiment. The flywheel diameter is 3.3m and the alternator is 1.8 m in diameter. After being driven up to full speed over a long period of time by a 1491 kW motor, the alternator is rapidly decelerated from approximately 1800 rpm to 1500 rpm during a 2 second interval. This sequence is repeated about six times per working day on average. A full lateral rotordynamic analysis of the including the rotors, fluid film bearings and unbalanced motor magnetic force was carried to assess the effects of rotor modifications in the alternator shaft bore. This paper provides a more detailed analysis of a complicated rotor train than is often performed for most rotors. Critical speeds, stability and unbalance response were evaluated to determine if lateral critical speeds might exist in the operating speed range in the existing or modified rotor train and if unbalance levels were within acceptable ranges. Critical speeds and rotor damping values determined for the rotor system with the existing and modified rotor. The first critical speed at 1069 rpm is an alternator mode below the operating speed range. The second critical speed is also an alternator mode but, at 1528 rpm, is in the rundown operating speed range. The third critical speed is a flywheel mode at 1538 rpm, also in the rundown operating speed range but well damped. The predicted highest rotor amplitude unbalance response level is at 1633 rpm, again in the operating speed range. Direct comparisons were made with measured bearing temperature values, with good agreement between calculations and measurements. Stress levels in the rotor were evaluated and found to be well below yield stress levels for the material for both original and modified rotors. Comparisons we carried out between standard vibration specifications and measured vibration levels which indicated that the third critical speed amplification factors were much higher than API standards indicate they should have been. Corrective actions to reduce unbalance were taken for the modified rotor.


1991 ◽  
Vol 19 (2) ◽  
pp. 113-120
Author(s):  
S. K. Clark

Abstract A brief review of tire critical speeds is given using the beam under tension as a physical model. In its most common form, this model visualizes the critical speed as that speed just sufficient to sustain a continuous sinusoidal bending wave in the tire tread band. A number of studies have been published modifying this concept by the introduction of material damping, centrifugal effects, and other characteristics, some of which aid in explaining the fact that the wave pattern observed experimentally is local and decays rapidly away from the contact patch. This paper presents a different view of the wave pattern needed for a critical speed to exist, namely that a naturally occurring local wave can arise independent of material damping and that as a practical fact, material damping may have little to do with the onset of the phenomenon. A discussion on the effect of tire design variables on critical speed is given based on the expressions derived here.


Author(s):  
Lyn M. Greenhill ◽  
Guillermo A. Cornejo

Abstract Most rotordynamic analyses typically ignore the potential for critical speeds to be created by traversing a backward precessional whirl mode. While not commonly recognized, a backward mode can be excited using unbalance as the driving force. Based on the analysis of a Jeffcott rotor-bearing model, it was found that the condition for this response to occur is strongly dependent on stiffness asymmetry in the rotordynamic coefficients at the supports. To illustrate the application of this result, a rotordynamic analysis on actual hardware is presented, in which the unbalance excited backward mode resonance is calculated to occur. Test data is also given indicating the presence of the predicted critical speed. It is important to note that although the resonance is due to the backward mode, the precessional direction is forward. Several recommendations are offered with respect to rotor-bearing design so that this unique critical speed situation may be avoided.


Author(s):  
T. N. Shiau ◽  
J. R. Chang ◽  
W. B. Lu

This paper presents the multi-objective optimization of a geared rotor-bearing system with the critical speeds constraints by using an efficient multilevel algorithm. The weight of each rotor shaft, the unbalance response, and the response due to the transmission error are minimized simultaneously under the critical speed constraints. The design variables are the inner radii of the shaft, the stiffness of bearings, and the gear mesh stiffness. The finite element method (FEM) is employed to analyze the dynamic characteristics and the method of feasible direction (MFD) is applied in the optimization of the single objective stage. Based on the sensitivity analysis that gear mesh stiffness has almost no influences on the critical speeds of the uncoupled modes of two shafts, an efficient multilevel algorithm composed of system and subsystem levels is developed. In the cycle of iteration, the minimization of the shaft weight is performed in the subsystem level with the critical speed constraints of only uncoupled modes of two shafts and the unbalance response and the transmission error response are reduced in the system level with the critical speed constraints of only coupled modes. It is indicated from the numerical results that the shaft weight, the unbalance response, and the transmission error response via the multilevel technique (ML) are all reduced much more than those via the weighting method (WM) and the goal programming method (GPM).


2015 ◽  
Vol 31 (1) ◽  
pp. 403-420 ◽  
Author(s):  
Ming Hei Cheng ◽  
Thomas H. Heaton

A simple prismatic Timoshenko beam model with soil-structure interaction (SSI) is developed to approximate the dynamic linear elastic behavior of buildings. A closed-form solution with complete vibration modes is derived. It is demonstrated that building properties, including mode shapes, can be derived from knowledge of the natural frequencies of the first two translational modes in a particular direction and from the building dimensions. In many cases, the natural frequencies of a building's first two vibrational modes can be determined from data recorded by a single seismometer. The total building's vibration response can then be simulated by the appropriate modal summation. Preliminary analysis is performed on the Caltech Millikan Library, which has significant bending deformation because it is much stiffer in shear.


Author(s):  
R Firoozian ◽  
H Zhu

The transfer matrix method together with a digital computer form the foundation of the dynamic analysis of rotor-bearing systems. The properties of each segment of the rotating shaft are expressed in simple matrix form and the overall dynamic behaviour is then obtained by successive multiplication of the element matrices. The main drawback associated with this method is the numerical instability in calculating natural frequencies for complex systems. The finite element method, on the other hand, uses the element stiffness and mass matrices to form the global equation of motion for the complete system. This avoids the numerical problems of the transfer matrix method at the expense of the computer memory requirements. The new method described in this paper combines the transfer matrix and finite element techniques to form a powerful algorithm for vibration analysis of rotor-bearing systems. It is shown that the accuracy improves significantly when the transfer matrix for each shaft segment is obtained from finite element techniques. The accuracy and efficiency of the hybrid method are compared with the transfer matrix method for a simply supported uniform rotating shaft where an analytical solution for the critical speeds and mode shapes is available. The method is then applied to a flexibly supported uniform shaft and a non-uniform shaft with a large disc to show the capability of the method for finding the critical speeds of complex rotor-bearing systems.


Author(s):  
T. N. Shiau ◽  
E. K. Lee ◽  
T. H. Young ◽  
W. C. Hsu

This paper investigates the dynamic behaviors of a geared rotor-bearing system mounted on viscoelastic supports under considerations of the gear eccentricity, excitation of the gear’s transmission error and the residual shaft bow. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The coupling effect of lateral and torsional motions is considered in the system dynamic analysis. The investigated dynamic characteristics include system natural frequencies and steady-state response. The results show that the mass, the stiffness and the loss factor of the viscoelastic support will significantly affect system critical speeds and steady-state response. Larger loss factor and more rigid stiffness of the viscoelastic supports will suppress the systematic amplitude of resonance. Parameters, which include magnitude of the residual bow and phase angle, are also considered in the investigation of their effects on system critical speeds and steady-state response. Results show that they have tremendous influence on first critical speed when the geared system mounted on stiff viscoelastic supports. The transmission error of the gear mesh is assumed to be sinusoidal with tooth passing frequency and it will induce multiple low resonant frequencies in the system response. It is observed that the excited critical speed equals to the original critical speed divided by gear tooth number.


Author(s):  
A. Rehman ◽  
K. S. Ahmed ◽  
F. A. Umrani ◽  
B. Munir ◽  
A. Mehboob ◽  
...  

The design and development of the rotating machinery require a precise identification of its dynamic response for efficient operation and failure prevention. Determination of critical speeds and mode shapes is crucial in this regard. In this paper, a finite element model (FEM) based on the Euler beam theory is developed for investigating the dynamic behavior of flexible rotors. In-house code in Scilab environment, an open source platform, is developed to solve the matrix equation of motion of the rotor-bearing system. The finite element model is validated by the impact hammer test and the dynamic testing performed on the rotors supported on a purpose-built experimental setup. Bearing stiffness is approximated by using the Hertzian contact theory. Obtaining the critical speeds and mode shapes further improves the understanding of dynamic response of rotors. This study paves way towards advanced research in rotordynamics in Faculty of Mechanical Engineering, GIK Institute.


1976 ◽  
Vol 98 (2) ◽  
pp. 505-513 ◽  
Author(s):  
Pranabesh De Choudhury ◽  
Stephen J. Zsolcsak ◽  
Eugene W. Barth

Rigid support lateral critical speeds along with undamped system critical speeds and mode shapes are presented for typical rotor-bearing systems. The steady-state unbalance response analysis presented shows the effect of fluid-film bearing damping on the rotor response. Experimental results show reasonably good correlation with analytical results. The investigation shows that a rational rotor-bearing system design approach can be made for high-speed rotating machinery using the analytical tools.


Author(s):  
Mathew P. James ◽  
Pavan Kumar Reddy Pandillapalli ◽  
Swaminathan Gopalakrishnan

Integrally Geared Centrifugal Air Compressors (IGCAC) are becoming popular in many industrial applications. Development of such compressors requires in depth Rotordynamic Design and Analysis. To facilitate this, an in-house computer program based on transfer matrix method was developed using MATLAB® software. This computer program is capable of computing rotordynamic parameters such as static deflection, critical speed and interference diagram, and can output critical speed map, mode shape, unbalance response, orbit, for lateral direction. This software was used to analyze a two stage IGCAC with two impellers on a simply supported rotor running above second critical speed, driven by a two pole induction motor through a step-up gearbox. Undamped critical speed map, an output from the program was used to predict intended bearing stiffness for design. Using the above data and commercially available software DyRoBeS© a suitable bearing was designed. The speed dependent bearing characteristics, an output from DyRoBeS©, were used to determine damped unbalance response plot for a given residual unbalance. Corresponding to a maximum peak in unbalance response the damped critical speed and amplification factors (AF) were found out. The results from the newly developed software were compared with prediction from DyRoBeS©. It was found that critical speed was within 5% and AF was of the same order. Results from in-house software were comparable to that from DyRoBeS©. Based on the guidelines from API 684, the AF and separation margins were determined. A prototype IGCAC compressor as described above was built and tested. The testing included the collection of steady state, coast-up and coast-down data. Using the coast-up, coast-down data, a Bode plot was created. From this the critical speeds and AF’s were determined and compared with results from in-house software. It was found there was an error of less than 5% for the critical speed and around 5% for AF from the predicted results. For the same compressor a study on the potential excitation frequencies due to unbalance, impeller-diffuser and impeller-scroll tongue interactions were calculated. FFT of the steady state vibration data was deduced. It was found that the calculated frequency and measured frequency at maximum amplitude were aligning. Further noise measurements were recorded based on sound intensity as per guidelines in ISO 9614. The impeller-tongue interaction frequencies for stages were seen in the processed noise data. It was found that the predictions were in good agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document