Fabric Simulation Using Measurement Data for Dress Design

Author(s):  
Ayumi Hara ◽  
Hideki Aoyama ◽  
Tetsuo Oya

The state of wrinkles and folds formed on our dress according to human postures and movements is an important design element. Fashion designers must envisage the fabric state as wrinkling and folding. However, this is not easy because the fabric state strongly depends on the mechanical properties of the fabric, and in this sense, fabric simulation can aid designers in envisaging the fabric state. In previous works on fabric simulation, fabric models are proposed and developed based on the simple mass spring model. Since none of the models proposed so far take into account the state of slipping at the contact point of the warp and weft, simulated results differ from real fabric states. This paper proposes a method to simulate real fabric state taking into consideration slipping. In order to obtain real simulation results, the mechanical properties of fabric obtained by KES: Kawabata Evaluation System [1], were used in the simulation. The effectiveness of the proposed model was confirmed by comparing simulated results obtained by the proposed method with simulated results obtained by a previous method. In addition, it was verified by comparing the simulated results obtained by the proposed method with real cloth states.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
Lesław Kyzioł ◽  
Katarzyna Panasiuk ◽  
Grzegorz Hajdukiewicz ◽  
Krzysztof Dudzik

Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 822
Author(s):  
Jy-Jiunn Tzeng ◽  
Tzu-Sen Yang ◽  
Wei-Fang Lee ◽  
Hsuan Chen ◽  
Hung-Ming Chang

In this study, five urethane acrylates (UAs), namely aliphatic urethane hexa-acrylate (87A), aromatic urethane hexa-acrylate (88A), aliphatic UA (588), aliphatic urethane triacrylate diluted in 15% HDD (594), and high-functional aliphatic UA (5812), were selected to formulate five UA-based photopolymer resins for digital light processing (DLP)-based 3D printing. Each UA (40 wt%) was added and blended homogenously with ethoxylated pentaerythritol tetraacrylate (40 wt%), isobornyl acrylate (12 wt%), diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (3 wt%), and a pink acrylic (5 wt%). Each UA-based resin specimen was designed using CAD software and fabricated using a DLP 3D printer to specific dimensions. Characteristics, mechanical properties, and cytotoxicity levels of these designed UA-based resins were investigated and compared with a commercial 3D printing denture base acrylic resin (BB base) control group at different UV exposure times. Shore hardness-measurement data and MTT assays were analyzed using a one-way analysis of variance with Bonferroni’s post hoc test, whereas viscosity, maximum strength, and modulus were analyzed using the Kruskal–Wallis test (α = 0.05). UA-based photopolymer resins with tunable mechanical properties were successfully prepared by replacing the UA materials and the UV exposure times. After 15 min of UV exposure, the 5812 and 594 groups exhibited higher viscosities, whereas the 88A and 87A groups exhibited lower viscosities compared with the BB base group. Maximum flexural strength, flexural modulus, and Shore hardness values also revealed significant differences among materials (p < 0.001). Based on MTT assay results, the UA-based photopolymer resins were nontoxic. In the present study, mechanical properties of the designed photopolymer resins could be adjusted by changing the UA or UV exposure time, suggesting that aliphatic urethane acrylate has good potential for use in the design of printable resins for DLP-type 3D printing in dental applications.


2010 ◽  
Vol 08 (01n02) ◽  
pp. 325-335 ◽  
Author(s):  
HARALD WUNDERLICH ◽  
MARTIN B. PLENIO

Many experiments in quantum information aim at creating graph states. Quantifying the purity of an experimentally achieved graph state could in principle be accomplished using full-state tomography. This method requires a number of measurement settings growing exponentially with the number of constituents involved. Thus, full-state tomography becomes experimentally infeasible even for a moderate number of qubits. In this paper, we present a method to estimate the purity of experimentally achieved graph states with simple measurements. The observables we consider are the stabilizers of the underlying graph. Then, we formulate the problem as: "What is the state with the least purity that is compatible with the measurement data?" We solve this problem analytically and compare the obtained bounds with results from full-state tomography for simulated data.


2014 ◽  
Vol 31 (10) ◽  
pp. 1339-1350 ◽  
Author(s):  
Maciej Kot ◽  
Hiroshi Nagahashi ◽  
Piotr Szymczak

2016 ◽  
Vol 88 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Ka-yan Yim ◽  
Chi-wai Kan

Fabric hand is an indispensable characteristic for the selection of fabric and product development and the buying consideration for manufacturers and consumers. However, there is little comprehensive work on the hand feel property of warp-knitted fabrics due to the mainstream natural fibers (cotton, wool and silk) and other fabric structures (woven, weft-knitted and nonwoven). The increasing potential for the wide variety of applications and development of warp-knitted fabrics is not only because its fabric hand gives better determination for fabric marketing, but also because it provides extensive scope for fabric performance and appearance. This paper reports an experimental study on the integrated fabric hand behavior of a series of warp-knitted fabrics made for various apparel applications, such as sportswear, lingerie and leisure wear. These 105 fabrics were produced by varying different physical parameters, including fabric weight and fabric thickness. The Kawabata Evaluation System for Fabric (KES-F) was employed to obtain the fabric hand properties (primary hand value and total hand value) related with stiffness, smoothness and softness. All low-stress mechanical properties and fabric hand values from the testing results were used to verify the applicability of the KES-F on warp-knitted fabrics and to analyze the relationships of fabric parameters and hand characteristics. The results indicate that the KES-F is an appropriate tool to measure the hand attributes of warp-knitted samples, and moderate correlations between physical properties and mechanical behavior were found.


Author(s):  
M. V. Kovaleva ◽  
A. A. Golovko

The article deals with the problem, deficiencies in the evaluation system for civil servants. Also proposed a new methodological tool for improving the quality of the work of human resources services and improving the efficiency of the functioning of the state body


1968 ◽  
Vol 58 (5) ◽  
pp. 1621-1630
Author(s):  
R. D. Russell ◽  
R. D. Meldrum ◽  
O. G. Jensen

Abstract The characteristics of a seismograph can be modified by the use of filters or by the application of negative feedback. Both methods provide the same basic signal to noise capabilities, and each has its particular advantages. The principal advantage of the feedback instrument is its flexibility and the possibility of linearity over a greater dynamic range. The application of electrical feedback to a seismometer requires the creation of normally nonexistent electrical input terminals. By incorporating the seismometer into a balanced Maxwell impedance bridge, input terminals can be simulated and the feedback introduced through the bridge. With the use of such negative feedback, it is possible to control individually the effective mass, spring and damping constants of a seismometer. One instrument can thereby simulate seismometers of very different mechanical properties. For example, it is possible to increase the effective mass of a Willmore Mark I seismometer to well over one ton. A feedback seismograph has been constructed using these principles and has been in continuous operation for nearly two years.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Mike Leslie ◽  
Nishendra Moodley ◽  
Ian Goldman ◽  
Christel Jacob ◽  
Donna Podems ◽  
...  

The article explains the rationale for the development of standards for evaluation practice, the process followed in developing those standards, and how those standards inform the quality assessment of evaluations. Quality assessment of evaluations are conducted as a routine activity of the South African National Evaluation System (NES). The importance of quality assessment for improving the state of evaluation practice in South Africa is illustrated by presenting results from the quality assessments undertaken to date. The paper concludes by discussing the progress on the development of a public Evaluations Repository to manage and provide access to completed evaluations and their quality assessment results, and offering some concluding analytical remarks.


2020 ◽  
Vol 2020.28 (0) ◽  
pp. 518
Author(s):  
Norifumi KITA ◽  
Jun MUTO ◽  
Kazuaki NAGAYAMA ◽  
Kaoru UESUGI

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 921 ◽  
Author(s):  
Haiying Zhou ◽  
Xin Wei ◽  
Lee M. Smith ◽  
Ge Wang ◽  
Fuming Chen

The lack of an effective and practical quality control method for industrialized bamboo bundle veneers is the key restriction in the application of bamboo bundle composite materials in the field of construction. In this work, the density uniformity and mechanical properties of bamboo bundle veneers were systematically evaluated by the combination of light transmittance and mechanical stiffness. It was found that the number of broomings, dippings, and high-temperature heat treatments had different effects on the bamboo bundle veneers. On this basis, the uniformity of the density and mechanical properties of the bamboo scrimber (BS) that underwent hybrid paving, and the bamboo bundle laminated veneer lumber (BLVL), were analyzed. The results showed that the performance stability of bamboo bundle composites could be greatly improved by bamboo bundle veneer laminated paving. A large-scale quality evaluation system for bamboo bundle veneers was established in this work, and it provides conditions for the manufacture of bamboo bundle composites with stable and controllable performance.


Sign in / Sign up

Export Citation Format

Share Document