Analogy Seeded Mind-Maps: Testing of a New Design-by-Analogy Tool

Author(s):  
K. Scott Marshall ◽  
Richard Crawford ◽  
Matthew Green ◽  
Daniel Jensen

Recent research has investigated methods based on design-by-analogy meant to enhance concept generation. This paper presents Analogy Seeded Mind-Maps, a new method to prompt generation of analogous solution principles drawn from multiple analogical domains. The method was evaluated in two separate design studies using senior engineering students. The method begins with identifying a primary functional design requirement such as “eject part.” We used this functional requirement “seed” to generate a WordTree of grammatically analogical words for each design team. We randomly selected a set of words from each WordTree list with varying lexical “distances” from the seed word, and used them to populate the first-level nodes of a mind-map, with the functional requirement seed as the central hub. Design team members first used the word list to individually generate solutions and then performed team concept generation using the analogically seeded mind-map. Quantity and uniqueness of the resulting verbal solution principles were evaluated. The solution principles were further analyzed to determine if the lexical “distance” from the seed word had an effect on the evaluated design metrics. The results of this study show Analogy Seeded Mind-Maps to be useful tool in generating analogous solutions for engineering design problems.

Author(s):  
Margaret B. Bailey ◽  
Elizabeth DeBartolo

A 2005–06 Multidisciplinary Senior Design team created a series of classroom activities designed to teach middle school students about engineering topics related to energy and the environment. This Traveling Engineering Activity Kit (TEAK) consists of five smaller kits, each based on a different energy-related theme: Heat Transfer, Electrical Energy, Wind and Water, Solar Power, and Chemical Energy. Each kit contains an Academic Activity to teach a background concept, a Hands-On Activity to allow students to apply the concepts learned, and a Take-Home Activity that can be done independently at home. The design team also developed instruction manuals suitable for non-engineers, lesson plans, handouts, and post-activity quizzes to assess participants’ learning. To date, the kits have been used by several hundred middle school students either in their classroom setting or while participating in on-campus outreach programs. This paper highlights the Heat Transfer TEAK including an overview of the intended learning outcomes; physical materials and set-ups included within the interactive kit; as well as details related to the development of the kit by a multi-disciplinary team of senior engineering students. Program and kit assessment progress is discussed based on feedback from design team members; middle school students and teachers. Future plans for refining current kits and expanding kit offerings are also discussed.


Author(s):  
Mohammad Alsager Alzayed ◽  
Scarlett R. Miller ◽  
Jessica Menold ◽  
Jacquelyn Huff ◽  
Christopher McComb

Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.


2017 ◽  
Vol 3 ◽  
Author(s):  
Hernan Casakin ◽  
Petra Badke-Schaub

This study deals with the role of mental models in the coordination of team activities during design problem-solving. The work centers on the sharedness of mental models in a design team setting, mainly on the interaction between an architect and two clients. A major goal is to gain insight into how modifications in mental models affect coordination, and how sharedness develops through the process. Our focus is to explore, through a case study, the individual contributions of the architect and the clients to coordination of the work process, and how sharedness of the development of the team mental model evolves in the early stage of concept generation. Our claim is that work teams develop a certain degree of sharedness of the mental models of individual team members during information exchange. This team mental model can be insufficient or even wrong, but as long as the team members feel agreement in the team, they coordinate their work on that basis. Thus, sharedness of mental models is believed to be a powerful team asset, especially when it is reached in the earlier phases of the design process. Our findings suggest that in order to attain sharedness among design team members, design activities related to the task mental model should be encouraged, specifically the generation of new ideas and the analysis of solutions. Implications for practice and education are suggested.


Author(s):  
Shun Takai ◽  
Marcos Esterman

Cooperation among team members and good teamwork are essential to successfully complete design projects. As such, engineering students are expected to learn how to design and work effectively in a team. While, team-based project courses have been implemented in almost all engineering and engineering technology disciplines, achieving full contribution by all team members has been a persistent challenge in design and other engineering disciplines. This paper proposes a possible approach to establish guidelines to form design teams. In this paper, we first review team-effectiveness models. We then propose a design-team-effectiveness model, which will study associations between inputs, processes, and outputs in order to improve team processes and maximizes team performance through design team composition, work structure and improved team processes. Finally, we propose (1) measurements of design-team inputs, processes, and outputs, and (2) approaches to analyze associations among inputs, processes, and outputs.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Linda Schmidt ◽  
Werner Born

Nature is a powerful resource for engineering designers. The natural world provides numerous cases for analogy and inspiration in engineering design. Transferring the valuable knowledge and inspiration gained from the biology domain to the engineering domain during concept generation is a somewhat disorganized process and relies heavily on the designers’ insight and background knowledge of many fields to make the necessary leaps between the domains. Furthermore, the novice designer approaching biology for inspiration tends to focus heavily on copying the visual attributes of a biological system to develop a solution that looks like the biological system rather than explore at deeper levels to uncover relationships that lead to the development of true analogies. There are now well-known methods for teaching bioinspired design in engineering and the majority of methods prescribe the use of analogies in order to facilitate knowledge transfer, however, guidance in analogy formulation to foster the creative leaps is missing or ill defined. Thus little is known about how students use biological systems for design inspiration. This paper proposes categories for analogical knowledge transfer in bio-inspired design to foster and characterize diverse analogical knowledge transfer. The proposed analogy categories are used to describe the behavior seen in an engineering class. Results indicate that (1) single biological system provides multiple analogies that result in different engineering inspiration for design; (2) biological information from multiple categories is transferred during concept generation; and (3) non-physical characteristics may inspire more sophisticated engineering inspiration than those based on physical characteristics alone. Overall, the analogy data classification has resulted in a better understanding of analogical knowledge transfer during bio-inspired design and leads to best practices for teaching bio-inspired design to engineering students.


2021 ◽  
Author(s):  
Vivek Rao ◽  
Ananya Krishnan ◽  
Jieun Kwon ◽  
Euiyoung Kim ◽  
Alice Agogino ◽  
...  

Abstract Design team decision-making underpins all activities in the design process. Simultaneously, goal alignment within design teams has been shown to be essential to the success of team activities, including engineering design. However, the relationship between goal alignment and design team decision-making remains unclear. In this exploratory work, we analyze six student design teams’ decision-making strategies underlying 90 selections of design methods over the course of a human-centered design project. We simultaneously examine how well each design team’s goals are aligned in terms of their perception of shared goals and their awareness of team members’ personal goals at the midpoint and end of the design process, along with three other factors underpinning team alignment at the midpoint. We report three preliminary findings about how team goal alignment and goal awareness influence team decision-making strategy that, while lacking consistent significance, invite further research. First, we observe that a decrease in awareness of team members’ personal goals may lead student teams to use a different distribution of decision-making strategies in design than teams whose awareness stays constant or increases. Second, we find that student teams exhibiting lower overall goal alignment scores appear to more frequently use agent-driven decision-making strategies, while student teams with higher overall goal alignment scores appear to more frequently use process-driven decision-making strategies. Third, we find that while student team alignment appears to influence agent- and process-driven strategy selection, its effect on outcome-driven selection is less conclusive. While grounded in student data, these findings provide a starting place for further inquiry into of designerly behavior at the nexus of teaming and design decision-making.


Author(s):  
Apurva Patel ◽  
William Kramer ◽  
Joshua D. Summers ◽  
Marissa Shuffler-Porter

Function models are widely recognized as a useful tool in mechanical engineering conceptual design as a bridge between problem and solution space. Unlike many other engineering design tools that are collaborative allowing many designers to contribute to the design task, function modeling has not been historically presented as a collaborative tool. This paper presents a controlled experimental study that explores the how different initial function models are completed by novice engineers influence the number of functions added to the model. Eighty-eight senior mechanical engineering students were given partial function models to two similarly complex engineering design problems. Each student was asked to complete the function model to best address the problem presented. The number of added functions was compared considering two variables: percent completed of initial seed model (10%, 40%, and 80%), initial chaining of functions (forward, backward, and nucleation). It was found that models for Backward Chaining and Nucleation at 10% initial seed resulted in the greatest addition of functions by the students. Further, Backward Chaining and Nucleation yielded more added functions than Forward Chaining in all seed configurations. Recognizing that there is a difference between Forward Chaining and Backward Chaining or Nucleation, further study is warranted to understand how individuals create function models and which approach yields more useful models to either understand the problem presented or to explore solution options.


1998 ◽  
Vol 37 (03) ◽  
pp. 302-306 ◽  
Author(s):  
T. Timpka ◽  
M. Ljunggren ◽  
V. Vimarlund

AbstractThe perception of risk exposure among design team members during the early phases of information system development projects can provide valuable strategic information for clinical organizations. To develop a typology of perceived risks during information system development projects in health care, interviews were performed with key team members from a specialist clinic, primary health care, and an informatics research group, during the requirements specification. Phenomenological data analysis and secondary integration of the results in available theories were performed. System objectives, the user requirements definition procedure, the communication pattern between design team members and project management were found to be perceived as the main risk areas. In the secondary analysis, the technical factors, identified as preventing a maximization of the use of the resources, were lack of informatics knowledge among economic decision makers and differences between customers and suppliers regarding their views on the nature of system design. During the implementation of a given strategy, decision makers may consider the requests of their own sponsors in the first place and maximize the use ofthe project resources in the second place. Informatics knowledge plays a key role in risk perception during the development of an information system in health care. Political considerations by team members are important to take into regard, since these may influence technical and economic decisions.


Author(s):  
Wim Zeiler ◽  
Perica Savanovic ◽  
Emile Quanjel

Integral Building Design is done by multi disciplinary design teams and aims at integrating all aspects from the different disciplines involved in a design for a building such as; archtitecture, construction, building physics and building services. It involves information exchange between participants within the design process in amounts not yet known before. To support this highly complex process an Integral Building Design methods is developed based on the combination of a prescriptive approach, Methodical Design, and a descriptive approach, Reflective practice. Starting from the Methodical Design approach by van den Kroonenberg, a more reflective approach is developed. The use of Integral Design within the design process results in a transparency on the taken design steps and the design decisions. Within the design process, the extended prescriptive methodology is used as a framework for reflection on design process itself. To ensure a good information exchange between different disciplines during the conceptual phase of design a functional structuring technique can be used; Morphological Overviews (MO). Morphology provides a structure to give an overview of the consider functions and their solution alternatives. By using this method it is presumed that it helps to structure the communication between the design team members and a such forms a basis for reflection on the design results by the design team members. This method is used in the education program at the Technische Universiteit Eindhoven and was tested in workshops for students and for professionals from the Royal Institute of Dutch Architects (BNA) and the Dutch Association of Consulting Engineers (ONRI). Over 250 professionals participated in these workshops.


Sign in / Sign up

Export Citation Format

Share Document