Effect of Diamond-Like-Carbon Coating on 3D Surface Roughness

Author(s):  
Sergio Mordo ◽  
Valery Popravko ◽  
Ahmad Barari

Companies that coat their products with DLC often have strict surface roughness goals. This research investigates the surface roughness properties of uncoated and DLC coated specimens in an effort to know what uncoated surface roughness is needed to obtain a certain DLC coated surface roughness. Therefore, a model describing the relationship between uncoated and DLC coated surface roughness is needed. If this relationship can be estimated, the cost of surface finishing can be minimized by avoiding any unnecessary processes. A total of 7 specimens were tested before and after coating process with a non-contact surface roughness measurement microscope. Mathematical relationships are found between the DLC coated surface roughness and uncoated surface roughness. An experimental methodology was described for applying the findings to other coating methods and materials as the mathematical relationships found in this study are specific to the coating process and materials used.

Author(s):  
Sergio Mordo ◽  
Valery Popravko ◽  
Ahmad Barari

Companies that coat their products with DLC often have strict surface roughness and goals. This research investigates the surface roughness properties of uncoated and DLC coated specimens in an effort to know what uncoated surface roughness is needed to obtain a certain DLC coated surface roughness. Therefore, a model describing the relationship between uncoated and DLC coated surface roughness is needed. If this relationship can be estimated, the cost of surface finishing can be minimized by avoiding any unnecessary processes. A total of 7 specimens were tested before and after coating process with a non-contact surface roughness measurement microscope. Mathematical relationships are found between the DLC coated surface roughness and uncoated surface roughness. An experimental methodology was described for applying the findings to other coating methods and materials as the mathematical relationships found in this study are specific to the coating process and materials used.


2020 ◽  
Vol 4 (141) ◽  
pp. 157-163
Author(s):  
IL’YA ROMANOV ◽  
◽  
ROMAN ZADOROZHNIY

When applying coatings using various methods on the surfaces of moving parts that work in joints, it is important to make sure that the coatings are strong and wear-resistant in order to return them to their original resource. All existing hardening technologies and materials used to perform coatings have their own characteristics, therefore, the quality of the resulting coatings can be judged only after specific tests. (Research purpose) The research purpose is in evaluating the properties of the coating obtained by the method of electric spark hardening, and its ability to resist friction and mechanical wear. (Materials and methods) Authors conducted tests on the basis of the "Nano-Center" center for collective use. A coating was applied on the BIG-4M unit with a VK-8 hard alloy electrode, tribological properties were evaluated on a CSM Instruments TRB-S-DE-0000 tribometer, the width of the friction track was measured after the test using an inverted OLYMPUS gx51 optical microscope, and samples were weighed before and after the test on a VLR-200 analytical balance. Conducted research in accordance with GOST 23.224-86 and RD 50-662-88 guidelines. (Results and discussion) The article presents performed tests on the run-in and wear resistance of the coating. The samples were worked on with a step-by-step increase in the load. During the tests, the friction force was drawed on the diagram. Authors compared the results with the reference sample, an uncoated surface. (Conclusions) The resulting coating has better run-in and wear resistance compared to the standard, and the increase in wear resistance in dry friction conditions is very significant.


Author(s):  
Weiwei Liu ◽  
Qian Lyu ◽  
Liming Lei ◽  
Yanhao Hou ◽  
Lei Shi

Through the simulation of abrasive flow in the inner cavity of the superalloy pre-spinning nozzle made by additive manufacturing, the special abrasive polishing tool is optimized and the surface polishing technology of the inner cavity of typical structure test pieceis studied. Through comparison of the surface morphology before and after polishing, it can be concluded that the abrasive flow has a considerable removal effect on the powder sticking effect, spheroidizing effect, step effect, slag hanging phenomenon and residual support on the surface of parts, but it has a limited effect on the surface pit of the substrate. After polishing, the surface roughness of the inner cavity of parts decreasea from Ra 3.1397 μm to Ra 0.5805 μm, and the surface roughness of blade position decreases from Ra 4.8473 μm to Ra 0.3606 μm. Through the range analysis, it is found that the effect intensity of the processing parameters on the surface roughness of the parts is in order of the processing time, processing pressure and abrasive particle size.


2019 ◽  
Vol 13 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Akihisa Kubota ◽  

To remove the microroughness and subsurface damage on the SiC and GaN surface efficiently, a surface finishing technique using a magnetic tool holding iron particles in a hydrogen peroxide solution is developed. This technique utilizes OH radicals generated from the iron catalytic particles in a hydrogen peroxide solution, and can be used to preferentially remove the topmost convex part on the surface, resulting in an atomically smooth surface. We employed this polishing technique to finish the surfaces of 2-inch SiC and 2-inch GaN wafers. The surface roughness before and after finishing was measured by scanning white light interferometric microscopy and atomic force microscopy. In addition, the material removal rate was calculated by weight loss due to the finishing process. The results show that the surface roughness on the SiC and GaN wafers is markedly improved. Moreover, the surface waviness and flatness of these wafers before and after finishing did not deteriorate. Atomic force microscope images indicate that an atomically flat SiC surface with a roughness value below 0.1 nm RMS and a GaN surface with atomic step and terrace structures were achieved. Our proposed finishing technique is effective in improving the surface microroughness of SiC and GaN wafers.


2021 ◽  
Vol 39 (4A) ◽  
pp. 565-572
Author(s):  
Hiyam M. Jedy ◽  
Rana A. Anaee ◽  
Abdullah A. Abdulkarim

The Nb2O5-Ni coating was processed using DC sputtering on structural steel and study characterization of composite coating SEM/EDS inspection indicated clearly perfect incorporation of Nb2O5 within the nickel rich. Increasing in surface roughness and decreasing in average diameters of particles were obtained for coated surface compared with uncoated surface from AFM analysis, in addition, microhardness test and thickness test showed that increasing of the hardness value to 163 HV for Nb2O5 - Ni composite coating compared to 132 HV for uncoated samples, the hardness for Ni coating also increasing to155 HV and the thickness for Nb2O5-Ni composite coatings increased significantly compared to uncoated samples.


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2021 ◽  
Vol 11 (3) ◽  
pp. 1253
Author(s):  
Evaggelos Kaselouris ◽  
Kyriaki Kosma ◽  
Yannis Orphanos ◽  
Alexandros Skoulakis ◽  
Ioannis Fitilis ◽  
...  

A three-dimensional, thermal-structural finite element model, originally developed for the study of laser–solid interactions and the generation and propagation of surface acoustic waves in the macroscopic level, was downscaled for the investigation of the surface roughness influence on pulsed laser–solid interactions. The dimensions of the computational domain were reduced to include the laser-heated area of interest. The initially flat surface was progressively downscaled to model the spatial roughness profile characteristics with increasing geometrical accuracy. Since we focused on the plastic and melting regimes, where structural changes occur in the submicrometer scale, the proposed downscaling approach allowed for their accurate positioning. Additionally, the multiscale simulation results were discussed in relation to experimental findings based on white light interferometry. The combination of this multiscale modeling approach with the experimental methodology presented in this study provides a multilevel scientific tool for an in-depth analysis of the influence of heat parameters on the surface roughness of solid materials and can be further extended to various laser–solid interaction applications.


2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Murtadha AlAli ◽  
Nikolaos Silikas ◽  
Julian Satterthwaite

Objective: To evaluate and compare the surface roughness and gloss of a DMA-free composite and Bis-GMA-free composite with a DMA-based composite before and after toothbrushing simulation. Materials and Methods: Fifteen dimensionally standardised composite specimens of three nano-hybrid resin composites (Tetric EvoCeram, Admira Fusion, and Venus Diamond) were used. Five specimens from each composite were polished and then subjected to a toothbrushing simulator. Surface roughness (Ra) and gloss were measured before toothbrushing and after 5000, 10,000, 15,000, and 20,000 toothbrushing cycles. The data was analysed using 5 × 3 ANOVA to assess surface roughness and gloss values and pairwise comparisons in the form of Tukey post hoc tests were performed to interpret main effects. Results: For all tested materials, surface roughness increased, and gloss decreased after toothbrushing abrasion. Surface roughness (Ra) values ranged from 0.14 to 0.22 μm at baseline and increased to between 0.41 and 0.49 μm after 20,000 toothbrushing cycles. Gloss values ranged between 31.9 and 50.6 GU at baseline and between 5.1 and 19.5 GU after 20,000 toothbrushing cycles. The lowest initial Ra value was detected in Venus Diamond and the highest initial gloss value was detected in Tetric EvoCeram. Conclusions: Simulated toothbrushing abrasion led to an increase in surface roughness and a decrease in gloss for all tested materials. Venus Diamond had the smoothest surface and Tetric EvoCeram had the glossiest surface after polishing and following 20,000 cycles of toothbrushing abrasion. Admira Fusion demonstrated the roughest surface and had the lowest gloss values before and after toothbrushing abrasion.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Miriam Truffa Giachet ◽  
Julie Schröter ◽  
Laura Brambilla

The application of varnishes on the surface of metal objects has been a very common practice since antiquity, both for protective and aesthetic purposes. One specific case concerns the use of tinted varnishes on copper alloys in order to mimic gilding. This practice, especially flourishing in the 19th century for scientific instruments, decorative objects, and liturgical items, results in large museum collections of varnished copper alloys that need to be preserved. One of the main challenges for conservators and restorers deals with the identification of the varnishes through non-invasive and affordable analytical techniques. We hereby present the experimental methodology developed in the framework of the LacCA and VERILOR projects at the Haute École ARC of Neuchâtel for the identification of gold varnishes on brass. After extensive documentary research and analytical campaigns on varnished museum objects, various historic shellac-based varnishes were created and applied by different methods on a range of brass substrates with different finishes. The samples were then characterized by UV imaging and infrared spectroscopy before and after artificial ageing. The comparative study of these two techniques was performed for different thicknesses of the same varnish and for different shellac grades in order to implement an identification methodology based on simple non-invasive examination and analytical tools, which are accessible to conservators.


Sign in / Sign up

Export Citation Format

Share Document