Unshrouded Rotor Tip Clearance Effects in Expander Cycle Turbines

Author(s):  
Lennard Helmers ◽  
Jens Klingmann

Steady flow in axial one-stage turbines is assessed numerically and experimentally. The simulations are performed on coarse meshes using a standard numerical approach (3D, steady state, kε-turbulence model, wall function at solid boundaries). In order to allow for conclusions drawn from these rapid numerical studies, the approach was compared with an explicit LDA (Laser Doppler anemometry) mapping of the velocity field downstream the rotor on a representative turbine stage. A two-component LDA system allowed for measurements of axial and tangential velocity components at varying depth (radius) in the flow channel, Measurements thus correspond to a full plane at constant axial position in the rotating frame of reference of the rotor. Comparison between LDA velocity mapping and CFD results shows good agreement. A series of subsequent simulations is thus used to judge the impact of varied blade/stage design parameters. Two turbine layouts are defined for identical operating conditions and shaft power. The flow in the unshrouded rotor blade row is analyzed for the influence of varying tip clearance size and the dependency on stage velocity triangles. – Known correlations for tip clearance losses (typically used in mean line predictions) are used, though the blade row geometry considered is beyond the limits the correlations are intended for. The absolute loss level found in CFD simulations differs significantly from what is expected when using loss correlations. Still the variation with tip gap size is predicted well by some of the investigated models. As dependency of tip clearance losses on stage velocity triangles is considered, none of the tested correlations gives results consistent with the numerical simulations. The use of standard correlations ‘beyond the limits’ is thus considered to introduce high uncertainty. Due to the good consistency between LDA and numerical results, the conclusions are considered to be valid for stage designs similar to the ones analyzed.


Author(s):  
J. M. Ferna´ndez Oro ◽  
K. M. Argu¨elles Di´az ◽  
C. Santolaria Morros

This work develops the numerical modeling of a monoplane axial jet fan with symmetric blades. The goal of the study is the simulation of the flow inside a rotor with elliptic airfoils, where the Kutta condition cannot be satisfied. The unsteady 3D model includes tip clearance gridding and a sliding mesh technique to simulate transient effects. The flow patterns inside the blade passage and the wake-core structure will be studied at design operating conditions. Also, the interaction of the tip leakage flow with time-averaged structures will be analyzed in detail. Therefore, the impact of the tip vortex in the mean time performance of the jet fan will be introduced. The investigation shows how the tip leakage vortex modifies the blade loading on the suction surface. The leakage flow rolls-up in a vortical structure at the suction side, establishing a mixing mechanism that produces a low axial velocity region. As a result, the adverse pressure gradient is enhanced and a major flow separation overcomes. This feature is especially critical in case of a rotor with symmetric blades, where the flow is always detached at the trailing edge. The simulation is carried out using a commercial code, FLUENT, which resolves the Navier-Stokes set of equations. An extremely high dense mesh is introduced in the model, so tip leakage is expected to be well-captured. In addition, fully-developed detachment of the boundary layer requires superior discretizations and high quality meshes, so restrictive y+ criteria have been employed for both endwall boundaries and blade surfaces. Turbulence modeling is closed using URANS models. The Reynolds Stress Model (RSM) has been employed because of its suitable predictions for rotating flow passages. In addition, this model considers anisotropic turbulence, and effects of curvature and rotation are directly addressed in the transport equations. Therefore, swirl effects of the tip vortex are expected to be well-captured. The numerical results are compared with previous experimental data of velocity fields to validate the simulation. Axial and tangential velocity profiles were obtained using a five-hole probe. Complementary, the instantaneous wake flow structure was measured with a dual hot wire anemometer.



Author(s):  
S. Eshati ◽  
M. F. Abdul Ghafir ◽  
P. Laskaridis ◽  
Y. G. Li

This paper investigates the relationship between design parameters and creep life consumption of stationary gas turbines using a physics based life model. A representative thermodynamic performance model is used to simulate engine performance. The output from the performance model is used as an input to the physics based model. The model consists of blade sizing model which sizes the HPT blade using the constant nozzle method, mechanical stress model which performs the stress analysis, thermal model which performs thermal analysis by considering the radial distribution of gas temperature, and creep model which using the Larson-miller parameter to calculate the lowest blade creep life. The effect of different parameters including radial temperature distortion factor (RTDF), material properties, cooling effectiveness and turbine entry temperatures (TET) is investigated. The results show that different design parameter combined with a change in operating conditions can significantly affect the creep life of the HPT blade and the location along the span of the blade where the failure could occur. Using lower RTDF the lowest creep life is located at the lower section of the span, whereas at higher RTDF the lowest creep life is located at the upper side of the span. It also shows that at different cooling effectiveness and TET for both materials the lowest blade creep life is located between the mid and the tip of the span. The physics based model was found to be simple and useful tool to investigate the impact of the above parameters on creep life.



2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.



Author(s):  
Miklos Sajben

Some long-standing questions concerning the dynamic behavior of coupled inlet/compressor systems have been answered by analyzing data from recent experiments in which the reflections of intense, short-duration acoustic pulses from an operating compressor were documented. The present paper offers a simple, one-dimensional integral theory as a background for these experiments. The arrival of an acoustic pulse (or an acoustic step change) to a single row of stationary blades gives rise to two acoustic waves (one upstream and one downstream), one vorticity wave, and possibly also an entropy wave. Pulses are characterized by integrals of spatial distributions of pressure, temperature or tangential velocity, while steps are defined by the jump of these flow properties at the wave. Simple expressions are given for the strength of each wave type, in terms of the blade stagger angle and the axial Mach number. The results help in interpreting, scaling and extrapolating experimental data. The work is a step towards an ability to specify realistic outflow boundary conditions in unsteady inlet flow computations, as appropriate for the compressor geometry and the operating conditions.



1948 ◽  
Vol 159 (1) ◽  
pp. 255-268 ◽  
Author(s):  
A. D. S. Carter

It has long been known that the energy losses occurring in an axial compressor or turbine cannot be fully accounted for by the skin-friction losses on the blades and annulus walls. The difference, usually termed secondary loss, is attributed to miscellaneous secondary flows which take place in the blade row. These flows both cause losses in themselves and modify the operating conditions of the individual blade sections, to the detriment of the overall performance. This lecture analyses the three-dimensional flow in axial compressors and turbines, so that, by appreciation of the factors involved, possible methods of improving the performance can readily be investigated. The origin of secondary flow is first examined for the simple case of a straight cascade. The physical nature of the flow, and theories which enable quantitative estimates to be made, are discussed at some length. Following this, the three-dimensional flow in an annulus with a stationary blade row is examined, and, among other things, the influence of radial equilibrium on the flow pattern is noted. All physical restrictions are then removed, and the major factors governing the three-dimensional flow in an actual machine are investigated as far as is possible with existing information, particular attention being paid to the influence of a non-uniform velocity profile, tip clearance, shrouding, and boundary layer displacement. Finally the various empirical factors used in design are discussed, and the relationships between them established.



Author(s):  
Wendy S. Barankiewicz ◽  
Michael D. Hathaway

The results of an experimental investigation to determine the impact of stator row indexing or clocking on multistage axial compressor performance are presented. Testing was conducted in the NASA Lewis Research Center’s Four-Stage Axial Compressor Facility. The impact of stator row indexing on both the overall and stator 3 blade element performance is presented for both the peak efficiency and peak pressure operating conditions. The change in overall performance due to stator indexing is 0.2% for both operating conditions. Indexing resulted in a 5% change in stator 3 mass averaged loss coefficient at the peak efficiency condition and a 10% change at the peak pressure condition. Since the mass-averaged stator 3 loss coefficient is on the order of 7%, the changes in loss coefficient due to indexing are on the order of 0.35–0.7%. These changes are considered to be small and are of the same order of magnitude as the passage-to-passage differences in loss coefficient due to manufacturing and assembly tolerances in the test compressor. The effects of stator-stator wake interactions are also shown and indicate that for rows with unequal blade counts it may be necessary to survey across more than one blade row pitch for accurate blade row performance measurements.



Author(s):  
Manuel Fritsche ◽  
Philipp Epple ◽  
Stefan Gast ◽  
Antonio Delgado

Abstract The working machines such as fans, blowers and pumps are often used for transporting fluids in technical systems. The rotating impeller is used for energy conversion of mechanical work into hydraulic work. Leonhard Euler published this relation of energy conversion in 1752–1756 and is still used today for the basic design of turbomachinery. In the present work, the Euler-Equation is described and presented in detail. Furthermore, a simplified parameterized blade channel of a centrifugal impeller is investigated with numerical simulation methods. The theoretical Euler-Equation is compared and validated with the numerical CFD-results. Based on an extensive CFD-optimization study, the impact of the impeller design parameters on the fan performance has been investigated. For this purpose, the blade shape and the operating conditions (speed and volume flow rate) were systematically varied. After an extensive grid study, the influence of the blade channel contour on the fan performance was investigated. The results of the study are presented in detail.



Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Pio Astrua ◽  
...  

Multistage axial compressors have always been a great challenge for designers since the flow within these kind of machines, subjected to severe diffusion, is usually characterized by complex and widely developed 3D structures, especially next to the endwalls. The development of reliable numerical tools capable of providing an accurate prediction of the overall machine performance is one of the main research focus areas in the multistage axial compressor field. This paper is intended to present the strategy used to run numerical simulations on compressors achieved by the collaboration between the University of Florence and Ansaldo Energia. All peculiar aspects of the numerical setup are introduced, such as rotor/stator tip clearance modelling, simplified shroud leakage model, gas and turbulence models. Special attention is payed to the mixing planes adopted for steady-state computations because this is a crucial aspect of modern heavy-duty transonic multistage axial compressors. In fact, these machines are characterized by small inter-row axial gaps and transonic flow in front stages, which both may affect non-reflectiveness and fluxes conservation across mixing planes. Moreover, the high stage count may lead to conservation issues of the main flow properties form inlet to outlet boundaries. Finally, the likely occurrence of partspan flow reversal in the endwall regions affects the robustness of non-reflecting mixing plane models. The numerical setup has been validated on an existing machine produced and experimentally tested by Ansaldo Energia. In order to evaluate the impact on performance prediction of the mixing planes introduced in the steady-state computation, un-steady simulations of the whole compressor have been performed at different operating conditions. These calculations have been carried out both at the compressor design point and close to the surge-line to evaluate the effect of rotor/stator interaction along the compressor working line.



Author(s):  
C. Klein ◽  
F. Wolters ◽  
S. Reitenbach ◽  
D. Schönweitz

For an efficient detection of single or multiple component damages, the knowledge of their impact on the overall engine performance is crucial. This knowledge can be either built up on measurement data, which is hardly available to non-manufacturers or –maintenance companies, or simulative approaches such as high fidelity component simulation combined with an overall cycle analysis. Due to a high degree of complexity and computational effort, overall system simulations of jet engines are typically performed as 0-dimensional thermodynamic performance analysis, based on scaled generic component maps. The approach of multi-fidelity simulation, allows the replacement of single components within the thermodynamic cycle model by higher-order simulations. Hence, the component behavior becomes directly linked to the actual hardware state of the component model. Hereby the assessment of component deteriorations in an overall system context is enabled and the resulting impact on the overall system can be quantified. The purpose of this study is to demonstrate the capabilities of multi fidelity simulation in the context of engine condition monitoring. For this purpose, a 0D-performance model of the IAE-V2527 engine is combined with a CFD model of the appropriate fan component. The CFD model comprises the rotor as well as the outlet guide vane of the bypass and the inlet guide vane of the core section. As an exemplarily component deterioration, the fan blade tip clearance is increased in multiple steps and the impact on the overall engine performance is assessed for typical engine operating conditions. The harmonization between both simulation levels is achieved by means of an improved map scaling approach using an optimization strategy leading to practicable simulation times.



Author(s):  
C. Brüggemann ◽  
M. Schatz ◽  
D. M. Vogt ◽  
F. Popig

This paper presents a numerical investigation of the impact of different part-span connector (PSC) configurations on the flow field in a turbine passage. For this purpose a linear cascade based on a profile section of a typical reaction blade used in industrial steam turbines was modeled and 3D simulations with varying size, shape, axial position and yaw incidence angle of the PSC were performed. Air modeled as ideal gas was chosen as the working fluid. Apart from a sensitivity study of the above mentioned parameters on the losses incurred by PSCs based on the numerical results, a detailed investigation of the flow field was carried out to highlight the interaction with the incoming flow. Moreover, the variation of the flow field behind the cascade was examined to assess the impact on the subsequent blade row. It is shown that depending on the geometry and the position of the PSC, different vortex structures are established in the wakes. These wakes interact with the main flow in the passage, thus influencing both dissipation and the downstream flow field. Major changes of the wake flow character and extent could be observed. Comparisons of the CFD results against commonly used analytical loss correlations for PSC revealed large differences, especially as certain parameters such as the yaw incidence angle are generally not considered by the latter. As a consequence, the analytical models need to be improved and extended. The results of this study indicate that the possibility of reducing the losses incurred by PSC by careful selection of design parameters within the design space dictated by its mechanical constraints.



Sign in / Sign up

Export Citation Format

Share Document