A Product Platform Concept Exploration Method for Product Family Design

Author(s):  
Timothy W. Simpson ◽  
Jonathan R. A. Maier ◽  
Farrokh Mistree

Abstract Today’s highly competitive, global marketplace is redefining the way companies do business. Many companies are being faced with the challenge of providing as much variety as possible for the market with as little variety as possible between products in order to maintain economies of scale while satisfying a wide range of customer requirements. Developing a family of products — a group of related products derived from a common product platform — provides an efficient and effective means to realize sufficient product variety to satisfy a range of customer demands. In this paper the Product Platform Concept Exploration Method (PPCEM) is presented, providing a Method that facilitates the synthesis and Exploration of a common Product Platform Concept that can be scaled into an appropriate family of products. As an example, the PPCEM is employed to design a family of universal electric motors that are also compared against a benchmark group of individually designed motors. The focus in this paper, however, is on the PPCEM and not on the results, per se.

Author(s):  
Carolyn G. Conner ◽  
Joseph P. De Kroon ◽  
Farrokh Mistree

Abstract In this paper we present the Product Variety Tradeoff Evaluation Method for assessment of alternative product platforms in product family design. The Product Variety Tradeoff Evaluation Method is an attention-directing tool for evaluating tradeoffs between commonality and individual product performance for product platform alternatives with differing levels of commonality. We apply the Product Variety Tradeoff Evaluation Method to a case study in transmission redesign for a family of cordless drills. The emphasis in this paper is placed on the method rather than on the results, per se.


Author(s):  
Achille Messac ◽  
Michael P. Martinez ◽  
Timothy W. Simpson

Abstract In an effort to produce more variety for today’s highly competitive market, companies are designing and developing families of products — groups of related products derived from common product platforms — to simultaneously satisfy multiple customer requirements. After reviewing the state of the art in product family and product platform design, we describe the Product Platform Concept Exploration Method (PPCEM) for designing common product platforms that can be scaled or “stretched” into a suitable family of products. This paper extends previous work by the authors through the novel integration of physical programming within the PPCEM to enable the product family design problem to be formulated using physically meaningful terms and preferences. The design of a family of universal electric motors is presented to demonstrate the effectiveness of the proposed approach. Performance gains are achieved in the motor family by utilizing physical programming within the PPCEM when compared to previous results.


Author(s):  
Chad Hume ◽  
David W. Rosen

Product family design strategies based on a common core platform have emerged as an efficient and effective means of providing product variety. The main goal in product platform design is to maximize internal commonality within the family while managing the inherent loss in product performance. Therefore, identification and selection of platform variables is a key aspect when designing a family of products. Based on previous research, the Product Platform Constructal Theory Method (PPCTM) provides a systematic approach for developing customizable products, while allowing for multiple levels of commonality, multiple product specifications, and balancing the tradeoffs between commonality and performance. However, selection of platform variables and the modes for managing product variety are not guided by a systematic process in this method. When developing a platform with more than a few variables, a quantitative method is needed for selecting the optimal platform variable hierarchy. In this paper we present an augmented PPCTM which includes sensitivity analysis of platform variables, such that hierarchical rank is conducted based on the impact of the variables on the product performance. This method is applied to the design of a line of customizable finger pumps.


Author(s):  
Zahed Siddique ◽  
Rajeshwar Reddy Adupala

Specifying components in a product platform and family architecture to support product varieties can be a challenging task for companies. Especially when various viewpoints have to be considered, which include product variety, materials, manufacturing complexity, assembly complexity, average component count commonality, assembly sequence, and late point differentiation. In order to identify or select a product platform and family configuration, evaluation of alternative configurations need to be performed. In this paper several product family evaluation criteria are presented for configuration evaluation. The application of product family configuration evaluation and a design approach is demonstrated using a Computer Mouse family.


2002 ◽  
Vol 124 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Achille Messac ◽  
Michael P. Martinez ◽  
Timothy W. Simpson

In an effort to increase customization for today’s highly competitive global markets, many companies are looking to product families to increase product variety and shorten product lead-times while reducing costs. The key to a successful product family is the common product platform around which the product family is derived. Building on our previous work in product family design, we introduce a product family penalty function (PFPF) in this paper to aid in the selection of common and scaling parameters for families of products derived from scalable product platforms. The implementation of the PFPF utilizes the powerful physical programming paradigm to formulate the problem in terms of physically meaningful parameters. To demonstrate the proposed approach, a family of electric motors is developed and compared against previous results. We find that the PFPF enables us to properly balance commonality and performance within the product family through the judicious selection of the common parameters that constitute the product platform and the scaling parameters used to instantiate the product family.


Author(s):  
Carolyn Conner Seepersad ◽  
Gabriel Hernandez ◽  
Janet K. Allen

Abstract In many cases, capabilities for providing product variety may be enhanced efficiently and effectively by creating families of products based on product platforms. However, the actual extent of a product platform — the range of products based upon the platform — is usually determined qualitatively. We present a quantitative method for determining the number of scaleable platforms for a specific market as well as the distribution of products among multiple platforms, recognizing that multiple factors determine optimal platform extent and that these factors often conflict. We model these factors quantitatively, at either the systems level or the individual product level, using the compromise Decision Support Problem including concepts derived from linear physical programming. We apply this approach to an example study of a family of absorption chillers. Our emphasis is on the approach rather than the results, per se.


Author(s):  
MICHELE GERMANI ◽  
FERRUCCIO MANDORLI

The use of modularity in the design of a new product or the adoption of a product platform, as the base to define new solutions within a product family, offers the company a chance to meet diverse customer needs at low cost because of economies of scale in all phases of the product's life cycle. At present, the concept of modularity in product design is becoming widely used in many industries such as automobiles and consumer electronics. However, if modularity and mass customization have attracted the interest of industries and researchers, the greatest efforts have been focused on the theoretical aspect whereas the related design support technologies have been only partially implemented. In this context, our intent is to develop highly reusable models, which are able to reconfigure themselves on the basis of new functional requirements. The proposed approach is based on the definition of what we callself-configuring componentsandmultiple-level functions. To describe the approach, a practical example related to the design of modules for woodworking machines is reported.


Author(s):  
Timothy W. Simpson

In an effort to improve customization for today’s highly competitive global marketplace, many companies are utilizing product families to increase variety, shorten lead-times, and reduce costs. The key to a successful product family is the product platform from which it is derived either by adding, removing, or substituting one or more modules to the platform or by scaling the platform in one or more dimensions to target specific market niches. This nascent field of engineering design research has matured rapidly in the past decade, and this paper provides an extensive review of the research activity that has occurred during that time to facilitate product platform design and optimization. Techniques for identifying platform leveraging strategies within a product family are reviewed along with optimization-based approaches to help automate the design of a product platform and its corresponding family of products. Examples from both industry and academia are presented throughout the paper to highlight the benefits of platform-based product development, and the paper concludes with a discussion of promising research directions to help bridge the gap between planning and managing families of products and designing and manufacturing them.


Author(s):  
John-Travis Hansen ◽  
David Rosen

Product platforms allow companies to compete in the global marketplace by facilitating product variety, by adding, removing, or substituting components and features across a product family, while reducing costs and lead times. In many cases, developing a common platform involves determining which components are in a product family, their connections, and their spatial layouts. The development of product configurations and layouts is a complex problem and involves both discrete and continuous mathematical processes. This paper presents algorithms and an implementation to address the problem of configuring products and component layouts. The algorithms will describe the processes used to generate the product configurations based on constraints on combinations and the layout of components within the products. The implementation presents software developed to present the algorithms for the configuration and layout processes.


Author(s):  
TIMOTHY W. SIMPSON

In an effort to improve customization for today's highly competitive global marketplace, many companies are utilizing product families and platform-based product development to increase variety, shorten lead times, and reduce costs. The key to a successful product family is the product platform from which it is derived either by adding, removing, or substituting one or more modules to the platform or by scaling the platform in one or more dimensions to target specific market niches. This nascent field of engineering design has matured rapidly in the past decade, and this paper provides a comprehensive review of the flurry of research activity that has occurred during that time to facilitate product family design and platform-based product development for mass customization. Techniques for identifying platform leveraging strategies within a product family are reviewed along with metrics for assessing the effectiveness of product platforms and product families. Special emphasis is placed on optimization approaches and artificial intelligence techniques to assist in the process of product family design and platform-based product development. Web-based systems for product platform customization are also discussed. Examples from both industry and academia are presented throughout the paper to highlight the benefits of product families and product platforms. The paper concludes with a discussion of potential areas of research to help bridge the gap between planning and managing families of products and designing and manufacturing them.


Sign in / Sign up

Export Citation Format

Share Document