Using Chaos for Fluid Mixing in Pulsed Micro Flows

Author(s):  
Arnaud Goullet ◽  
Nadine Aubry

Even though mixing is crucial in many microfluidic applications where biological and chemical reactions are needed, efficient mixing remains a challenge since the Reynolds number of these flows is typically low, thus excluding turbulence as a potential mechanism for stirring. While various approaches relying on clever geometries, cross-flows, miniature stirrers or external fields have been used in the past, our work has focused on generating stirring in microchannels of simple geometry by merely pulsing flow rates at the inlets through which the two fluids are brought into the device. Flow visualizations from experiments, as well as numerical simulations, have indicated that the majority of the mixing takes place in the confluence region. Even though it has been shown in previous work that good mixing can be achieved at relatively large scales using this technique, one of the challenges is to make sure that mixing occurs at small scales (i.e., particle scales) as well. To address this issue, we carefully study the dynamics of tracer particles using both computational fluid dynamics and dynamical systems theory, and explore the parameter space in terms of the Reynolds number, Strouhal number and phase difference between the two inlet flows. Specifically, we generate a bifurcation diagram in which both regular and chaotic dynamics occur. As expected, the chaotic regime exhibits stretching and folding of material lines at all (large and small) scales, and is thus promising as an effective mixing tool.

2013 ◽  
Vol 726 ◽  
pp. 1-4 ◽  
Author(s):  
Predrag Cvitanović

AbstractThe understanding of chaotic dynamics in high-dimensional systems that has emerged in the last decade offers a promising dynamical framework to study turbulence. Here turbulence is viewed as a walk through a forest of exact solutions in the infinite-dimensional state space of the governing equations. Recently, Chandler & Kerswell (J. Fluid Mech., vol. 722, 2013, pp. 554–595) carry out the most exhaustive study of this programme undertaken so far in fluid dynamics, a feat that requires every tool in the dynamicist’s toolbox: numerical searches for recurrent flows, computation of their stability, their symmetry classification, and estimating from these solutions statistical averages over the turbulent flow. In the long run this research promises to develop a quantitative, predictive description of moderate-Reynolds-number turbulence, and to use this description to control flows and explain their statistics.


Author(s):  
Amir Taheri ◽  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Bjørnar Lund ◽  
Alexandre Lavrov ◽  
...  

Abstract In this study, a new approach for detailed tracking of the interface between well fluid and cement by using particles is investigated. This can improve the quality of annular cementing of CO2 wells and thus the storage safety. For this purpose, the displacement mechanisms of Newtonian and non-Newtonian fluids in the annulus of vertical and inclined wells is investigated by using an experimental set-up with an eccentric annular geometry and by finite element analysis of an equivalent model with COMSOL Multiphysics solver. For more efficient displacement, the displacing fluid has a higher density than the displaced fluid, and the intermediate-buoyancy particles that reside at the interface between successive fluids are introduced into the models. Such particles must overcome strong secondary flows in order to travel with the interface. Particle motions are investigated in different experimental and numerical models, and their effectiveness is investigated. The experimental results confirm that while the particles with a size of 425–500 um are unable to overcome the secondary flows in eccentric vertical models and track the interface, they can be useful for tracking the interface between two fluids in an eccentric model with a small inclination to the narrow side. CFD analysis investigates this behavior with more details and shows the effects of some parameters on the particle motions.


Author(s):  
Amro M. Alqutub ◽  
Majid T. Linjawi ◽  
Ismail M. Alrawi

In the present study, the overall heat transfer coefficient, friction factors, and effectiveness of a dimple-protrusion air-to-air counter-flow plate heat exchanger have been measured at low Reynolds number (500 < Re < 4,000). The heat exchanger consists of 4 channels per flow direction built using 1 mm aluminum plates. Dimples are specially arranged such that protrusions are opposed for applications that require structural support to withstand high pressure difference between the two fluids. A maximum heat enhancement level of 3.2 was obtained with a penalty of increased friction factor by 9 times which leads to a maximum performance factor of 1.5. The effectiveness obtained was found to be almost independent of Reynolds number on most tested Re. A detailed uncertainty analysis has been performed to determine the uncertainty in the results.


2021 ◽  
Vol 6 (2) ◽  
pp. 41-52
Author(s):  
Mohd Rahimie Md Noor ◽  
Nur Syafiqah Hidayah Mohd Fauzi ◽  
Siti Nur Fadhilah Masrom ◽  
Mohd Azry Abdul Malek ◽  
Muhammad Firdaus Mustapha ◽  
...  

Heat exchangers are tools used to transfer thermal energy between two fluids (liquid or gas) by convection and conduction at different level of temperatures. Heat exchangers are the common equipment and employed in many different applications because of ability to withstand high temperatures and compactness. There are no intermixing or leakage occurred between two fluids during the heat transfer process as fluids are separated by walls of heat exchanger. The main objective of this project is to determine the heat exchanger effectiveness in heat transfer performance. This will be done by investigating the performance of five different angles of heat exchanger which are 150,300, 450, 600 and 750. The effectiveness of heat exchanger depends on the convection heat transfer coefficient of the fluid. Besides that, this project also aims to develop some parameters such as Nusselt number, Reynolds number and Prandtl number for evaluating the heat transfer. It is found that the Nusselt Number at angle of 150 is lower compared to angle of 750. Meanwhile, Reynolds number for angle 150 is higher than angle 750 which means that the type of flow produced by angle 150 is turbulent flow while for 750 angle is laminar flow. Hence, the overall result of this project proved that 150 is the best angle for heat exchanger in chimney because of higher velocity, higher volume flow rate, higher density of gas and higher LMTD. The relationship between Nusselt number and Reynolds number between different angles can be observed by plotting the graph using Maple Software.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Daniele Fiscaletti ◽  
Daniele Ragni ◽  
Edwin F. J. Overmars ◽  
Jerry Westerweel ◽  
Gerrit E. Elsinga

Author(s):  
Dong Jin Kang

A new design scheme is proposed for twisting the walls of a microchannel, and its performance is demonstrated numerically. The numerical study was carried out for a T-shaped microchannel with twist angles in the range of 0 to 34&pi;. The Reynolds number range was 0.15 to 6. The T-shaped microchannel consists of two inlet branches and an outlet branch. The mixing performance was analyzed in terms of the degree of mixing and relative mixing cost. All numerical results show that the twisting scheme is an effective way to enhance the mixing in a T-shaped microchannel. The mixing enhancement is realized by the swirling of two fluids in the cross section and is more prominent as the Reynolds number decreases. The twist angle was optimized to maximize the DOM, which increases with the length of the outlet branch. The twist angle was also optimized in terms of the relative mixing. The two optimum twisting angles are generally not coincident. The optimum twist angle shows a dependence on the length of the outlet branch but it is not affected much by the Reynolds number.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Justin Faber ◽  
Dolores Bozovic

AbstractHair cells of the auditory and vestibular systems are capable of detecting sounds that induce sub-nanometer vibrations of the hair bundle, below the stochastic noise levels of the surrounding fluid. Furthermore, the auditory system exhibits a highly rapid response time, in the sub-millisecond regime. We propose that chaotic dynamics enhance the sensitivity and temporal resolution of the hair bundle response, and we provide experimental and theoretical evidence for this effect. We use the Kolmogorov entropy to measure the degree of chaos in the system and the transfer entropy to quantify the amount of stimulus information captured by the detector. By varying the viscosity and ionic composition of the surrounding fluid, we are able to experimentally modulate the degree of chaos observed in the hair bundle dynamics in vitro. We consistently find that the hair bundle is most sensitive to a stimulus of small amplitude when it is poised in the weakly chaotic regime. Further, we show that the response time to a force step decreases with increasing levels of chaos. These results agree well with our numerical simulations of a chaotic Hopf oscillator and suggest that chaos may be responsible for the high sensitivity and rapid temporal response of hair cells.


2016 ◽  
Vol 791 ◽  
pp. 154-173 ◽  
Author(s):  
D. Fiscaletti ◽  
A. Attili ◽  
F. Bisetti ◽  
G. E. Elsinga

The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale ($Re_{{\it\lambda}}$) of $250$, via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called ‘scale invariance’ (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1–32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.


Sign in / Sign up

Export Citation Format

Share Document