scholarly journals Calibration of the NASA GRC 16″ Mass-Flow Plug

2012 ◽  
Author(s):  
David O. Davis ◽  
David J. Friedlander ◽  
J. David Saunders ◽  
Franco C. Frate ◽  
Lancert E. Foster

The results of an experimental calibration of the NASA Glenn Research Center 16″ Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15″ Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15″ and 16″ MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

1965 ◽  
Vol 87 (2) ◽  
pp. 525-529 ◽  
Author(s):  
S. Soundranayagam

The flow through two ISA nozzles of area ratio zero and 0.4 was investigated to determine the nature of the flow and its variation with Reynolds number. Separation occurs within the nozzle of zero area ratio, the size of the bubble increasing with decreasing Reynolds number. The predicted discharge coefficient based on a simplified flow model agrees with experiment for large Reynolds numbers. Upstream influences affect the performance of the nozzle of area ratio 0.4. The flows through the two nozzles are not comparable, and potential-flow results cannot be used to explain flow in venturis and nozzles in pipes. The discharge-coefficient curve for area ratio 0.4 shows a distinct hump when based on the head differential measured as for venturis, but no hump when based on the head differential across the corner taps.


Author(s):  
Heuy Dong Kim ◽  
Jae Hyung Kim ◽  
Kyung Am Park

The critical nozzle is defined as a device to measure the mass flow with only the nozzle supply conditions, making use of flow choking phenomenon at the nozzle throat. The discharge coefficient and critical pressure ratio of the gas flow through the critical nozzle are strongly dependent on Reynolds number, based on the diameter of nozzle throat and nozzle supply conditions. Recently a critical nozzle with small diameter is being extensively used to measure mass flow in a variety of industrial fields. For low Reynolds numbers, prediction of the discharge coefficient and critical pressure is very important since the viscous effects near walls significantly affect the mass flow through critical nozzle, which is associated with working gas consumption and operation conditions of the critical nozzle. In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through critical nozzle. In order to investigate the effect of the working gas and turbulence model on the discharge coefficient, several kinds of gases and several turbulence models are employed. The Reynolds number effects are investigated with several nozzles with different throat diameter. Diffuser angle is varied to investigate the effects on the discharge coefficient and critical pressure ratio. The computational results are compared with the previous experimental ones. It is known that the standard k-ε turbulence model with the standard wall function gives a best prediction of the discharge coefficient. The discharge coefficient and critical pressure ratio are given by functions of the Reynolds number and boundary layer integral properties. It is also found that diffuser angle affects the critical pressure ratio.


Author(s):  
H-D Kim ◽  
J-H Kim ◽  
K-A Park ◽  
T Setoguchi ◽  
S Matsuo

The critical nozzle is defined as a device to measure the mass flow with only the nozzle supply conditions making use of the flow choking phenomenon at the nozzle throat. The discharge coefficient and critical pressure ratio of the gas flow through the critical nozzle are strongly dependent on the Reynolds number, based on the diameter of the nozzle throat and nozzle supply conditions. Recently a critical nozzle with a small diameter has been extensively used to measure mass flow in a variety of industrial fields. For low Reynolds numbers, prediction of the discharge coefficient and critical pressure is very important since the viscous effects near walls significantly affect the mass flow through the critical nozzle, which is associated with working gas consumption and operation conditions of the critical nozzle. In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through the critical nozzle. In order to investigate the effect of the working gas and turbulence model on the discharge coefficient, several kinds of gases and several turbulence models are employed. The Reynolds number effects are investigated with several nozzles with different throat diameters. The diffuser angle is varied in order to investigate the effects on the discharge coefficient and critical pressure ratio. The computational results are compared with the previous experimental ones. It is known that the standard k-ε turbulence model with the standard wall function gives the best prediction of the discharge coefficient. The discharge coefficient and critical pressure ratio are given by functions of the Reynolds number and boundary layer integral properties. It is also found that the diffuser angle affects the critical pressure ratio.


Author(s):  
Nicolás García Rosa ◽  
Adrien Thacker ◽  
Guillaume Dufour

In a fan stage under windmilling conditions, the stator operates under negative incidence, leading to flow separation, which may present an unsteady behaviour due to rotor/stator interactions. An experimental study of the unsteady flow through the fan stage of a bypass turbofan in windmilling is proposed, using hot-wire anemometry. Windmilling conditions are reproduced in a ground engine test bed by blowing a variable mass flow through a bypass turbofan in ambient conditions. Time-averaged profiles of flow coefficient are independent of the mass flow, demonstrating the similarity of velocity triangle. Turbulence intensity profiles reveal that the high levels of turbulence production due to local shear are also independent of the inlet flow. A spectral analysis confirms that the flow is dominated by the blade passing frequency, and that the separated regions downstream of the stator amplify the fluctuations locked to the BPF without adding any new frequency. Phase-locked averaging is used to capture the periodic wakes of the rotor blades at the rotor/stator interface. A spanwise behaviour typical of flows through windmilling fans is evidenced. Through the inner sections of the fan, rotor wakes are thin and weakly turbulent, and the turbulence level remains constant through the stage. The rotor wakes thicken and become more turbulent towards the fan tip, where flow separation occurs. Downstream of the stator, maximum levels of turbulence intensity are measured in the separated flow. Large periodical zones of low velocity and high turbulence intensity are observed in the outer parts of the separated stator wake, confirming the pulsating motion of the stator flow separation, locked at the blade passing frequency. Space-time diagrams show that the flow is chorochronic, and a 2 D non-linear harmonic simulation is able to capture the main interaction modes, however, the stator incidence distribution could be affected by 3 D effects.


2006 ◽  
Vol 129 (2) ◽  
pp. 212-220 ◽  
Author(s):  
Giovanna Barigozzi ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The present paper reports on the aerothermal performance of a nozzle vane cascade, with film-cooled end walls. The coolant is injected through four rows of cylindrical holes with conical expanded exits. Two end-wall geometries with different area ratios have been compared. Tests have been carried out at low speed (M=0.2), with coolant to mainstream mass flow ratio varied in the range 0.5–2.5%. Secondary flow assessment has been performed through three-dimensional (3D) aerodynamic measurements, by means of a miniaturized five-hole probe. Adiabatic effectiveness distributions have been determined by using the wide-band thermochromic liquid crystals technique. For both configurations and for all the blowing conditions, the coolant share among the four rows has been determined. The aerothermal performances of the cooled vane have been analyzed on the basis of secondary flow effects and laterally averaged effectiveness distributions; this analysis was carried out for different coolant mass flow ratios. It was found that the smaller area ratio provides better results in terms of 3D losses and secondary flow effects; the reason is that the higher momentum of the coolant flow is going to better reduce the secondary flow development. The increase of the fan-shaped hole area ratio gives rise to a better coolant lateral spreading, but appreciable improvements of the adiabatic effectiveness were detected only in some regions and for large injection rates.


2005 ◽  
Vol 127 (3) ◽  
pp. 679-684 ◽  
Author(s):  
S. Charles ◽  
O. Bonneau ◽  
J. Fre^ne

The characteristics of hydrostatic bearings can be influenced by the compensating device they use, for example, a thin-walled orifice (diaphragm). The flow through the orifice is given by a law where an ad hoc discharge coefficient appears, and, in order to guarantee the characteristics of the hydrostatic bearing, this coefficient must be calibrated. The aim of this work is to provide an accurate estimation of the discharge coefficient under specific conditions. Therefore an experimental bench was designed and a numerical model was carried out. The results obtained then by the experimental and theoretical approach were compared with the values given by the literature. Finally, the influence of the discharge coefficient on the behavior of a thrust bearing is examined.


2019 ◽  
Vol 91 (8) ◽  
pp. 1077-1085 ◽  
Author(s):  
Filip Wasilczuk ◽  
Pawel Flaszynski ◽  
Piotr Kaczynski ◽  
Ryszard Szwaba ◽  
Piotr Doerffer ◽  
...  

Purpose The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the capability of two turbulence models to reflect the phenomenon will be assessed. The studied case will later be used as a reference case for the new, original design of flow control method to limit the leakage flow through the labyrinth seal. Design/methodology/approach Experimental measurements were conducted, measuring the mass flow and the pressure in the model of the labyrinth seal. It was compared to the results of numerical simulation performed in ANSYS/Fluent commercial code for the same geometry. Findings The precise machining of parts was identified as crucial for obtaining correct results in the experiment. The model characteristics were documented, allowing for its future use as the reference case for testing the new labyrinth seal geometry. Experimentally validated numerical model of the flow in the labyrinth seal was developed. Research limitations/implications The research studies the basic case, future research on the case with a new labyrinth seal geometry is planned. Research is conducted on simplified case without rotation and the impact of the turbine main channel. Practical implications Importance of machining accuracy up to 0.01 mm was found to be important for measuring leakage in small gaps and decision making on the optimal configuration selection. Originality/value The research is an important step in the development of original modification of the labyrinth seal, resulting in leakage reduction, by serving as a reference case.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Anna Avramenko ◽  
Alexey Frolov ◽  
Jari Hämäläinen

The presented research demonstrates the results of a series of numerical simulations of gas flow through a single-stage centrifugal compressor with a vaneless diffuser. Numerical results were validated with experiments consisting of eight regimes with different mass flow rates. The steady-state and unsteady simulations were done in ANSYS FLUENT 13.0 and NUMECA FINE/TURBO 8.9.1 for one-period geometry due to periodicity of the problem. First-order discretization is insufficient due to strong dissipation effects. Results obtained with second-order discretization agree with the experiments for the steady-state case in the region of high mass flow rates. In the area of low mass flow rates, nonstationary effects significantly influence the flow leading stationary model to poor prediction. Therefore, the unsteady simulations were performed in the region of low mass flow rates. Results of calculation were compared with experimental data. The numerical simulation method in this paper can be used to predict compressor performance.


1963 ◽  
Vol 30 (2) ◽  
pp. 275-278
Author(s):  
M. Cloutier

The influence of slot opening and of suction pressure upon the mass flow through the slot and the subsequent development of the boundary layer has been studied for the case of a single transverse slot opening into a boundary layer with a displacement thickness of 0.168 in. at a free-stream Mach number of 2.92. The results show that as much as 85 percent of the mass flow in the boundary layer between the wall and the position of the slot lip enters the slot, and that this result is independent of the slot reservoir pressure, providing the latter is less than approximately twice the tunnel static pressure.


Sign in / Sign up

Export Citation Format

Share Document