Computational Study of a Low Cost Rope Washer Pump for Brine Pumping Application in Rural Areas

Author(s):  
Neelesh Bhandari ◽  
Murali Damodaran

The rope washer pump is a hydraulic device in which the rope consisting of equally spaced washers is pulled upward to displace the fluid volume to the desired head before delivering it at the outlet. The straightforward working principle, the ease of manufacture, and the low cost are the main advantages of this pump over a reciprocating pump. The rope washer pump can be either driven by electric motor, by a wind mill, or manually for pumping brine water for salt harvesting in rural areas. In this study computational fluid dynamics (CFD) modeling of the rope washer pump is used to estimate the performance characteristics of the pump. Experimental studies of rope pump can only provide data related to flow rate and head it can achieve, while using CFD it is possible to obtain insight about the flow physics inside the pump. These insights can be used to propose design improvements for more efficient pump operation. Unsteady, incompressible Navier-Stokes equations are solved using a finite volume scheme on unstructured hybrid polyhedral-prismatic overset meshes to obtain flow parameters and the volume of fluid (VOF) interface tracking method is used to capture the free water surface inside the pump by tracking the volume fraction of fluid on each cell. The k-ε turbulence model is used to model turbulence and the motion of the washer is handled by using overset mesh technique for the computation. Leakage between the washer and housing is also considered in this computation. Pump characteristics are calculated for different pump speeds. Thus the flow variables obtained by computation are used to predict the efficiency and flow rate at different washer speed. The pump characteristics define the behavior of the rope washer and are characterized by effective flow rate, volumetric efficiency, power input and the pump torque. These performance characteristics are extracted from the computed flow fields and used for evaluating the optimum range of pump speed, with highest efficiency and flow-rate. This model can serve as a basis for future design optimization studies.

2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Parastou Eslami ◽  
Jung-Hee Seo ◽  
Amir Ali Rahsepar ◽  
Richard George ◽  
Albert C. Lardo ◽  
...  

Recent computed tomography coronary angiography (CCTA) studies have noted higher transluminal contrast agent gradients in arteries with stenotic lesions, but the physical mechanism responsible for these gradients is not clear. We use computational fluid dynamics (CFD) modeling coupled with contrast agent dispersion to investigate the mechanism for these gradients. Simulations of blood flow and contrast agent dispersion in models of coronary artery are carried out for both steady and pulsatile flows, and axisymmetric stenoses of severities varying from 0% (unobstructed) to 80% are considered. Simulations show the presence of measurable gradients with magnitudes that increase monotonically with stenotic severity when other parameters are held fixed. The computational results enable us to examine and validate the hypothesis that transluminal contrast gradients (TCG) are generated due to the advection of the contrast bolus with time-varying contrast concentration that appears at the coronary ostium. Since the advection of the bolus is determined by the flow velocity in the artery, the magnitude of the gradient, therefore, encodes the coronary flow velocity. The correlation between the flow rate estimated from TCG and the actual flow rate in the computational model of a physiologically realistic coronary artery is 96% with a R2 value of 0.98. The mathematical formulae connecting TCG to flow velocity derived here represent a novel and potentially powerful approach for noninvasive estimation of coronary flow velocity from CT angiography.


1999 ◽  
Vol 121 (2) ◽  
pp. 460-468 ◽  
Author(s):  
A. Mukhopadhyay ◽  
P. Venugopal ◽  
S. P. Vanka

A three-dimensional numerical simulation of linearly sheared flow past a circular cylinder has been performed for a shear parameter β of 0.02 and a mean Reynolds number of 131.5. A cylinder of 24 diameters span is considered. A second-order accurate finite volume scheme is used to integrate the unsteady Navier-Stokes equations. Present computations confirm both qualitatively and quantitatively, the aspects of cellular shedding as reported by several investigators through experimental studies. Up to five constant frequency cells of obliquely shedding vortices are observed. The nondimensional frequencies of these cells are observed to be lower than those given by parallel shedding correlations at the equivalent Reynolds numbers. It is also observed that the cell boundaries continuously move in time. Detailed distributions of vorticity and velocity components are presented to describe the flow. The influence of end-wall boundary conditions is studied by computing two cases, one with free-slip condition, and the other with no-slip condition on disks of radius of five cylinder diameters.


Author(s):  
Pablo S. Santaeufemia ◽  
Nathan G. Johnson ◽  
Christopher McComb ◽  
Kenji Shimada

Water-lifting technologies in rural areas of the developing world have enormous potential to stimulate agricultural and economic growth. The treadle pump, a human-powered low-cost pump designed for irrigation in developing countries, can help farmers maximize financial return on small plots of land by ending their dependency on rain-fed irrigation systems. The treadle pump uses a suction piston to draw groundwater to the surface by way of a foot-powered treadle attached to each suction piston. Current treadle pump designs lift water from depths up to 7 meters at a flow-rate of 1–5 liters per second. This work seeks to optimize the design of the Dekhi style treadle pump, which has gained significant popularity due to its simplicity. A mathematical model of the working fluid and treadle pump structure has been developed in this study. Deterministic optimization methods are then employed to maximize the flow rate of the groundwater pumped, maximize the lift height, and minimize the volume of material used for manufacturing. Design variables for the optimization included the dimensions of the pump, well depth, and speed of various parts of the system. The solutions are subject to constraints on the geometry of the system, the bending stress in the treadles, and ergonomic factors. Findings indicate that significant technical improvements can be made on the standard Dekhi design, such as increasing the size of the pump cylinders and hose, while maintaining a standard total treadle length. These improvements could allow the Dekhi pump to be implemented in new regions and benefit additional rural farmers in the developing world.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Pablo S Santaeufemia ◽  
Nathan G Johnson ◽  
Kenji Shimada

Water-lifting technologies in rural areas of the developing world have enormous potential to stimulate agricultural and economic growth. The treadle pump, a human-powered low-cost pump designed for irrigation in developing countries, can help farmers maximize financial return on small plots of land by ending their dependency on rain-fed irrigation systems. The treadle pump uses a suction piston to draw groundwater to the surface by way of a foot-powered treadle attached to each suction piston. Current treadle pump designs lift water from depths up to 7 meters at a flow-rate of 1–5 liters per second. This work seeks to optimize the design of the Dekhi style treadle pump, which has gained significant popularity due to its simplicity. A mathematical model of the working fluid and treadle pump structure has been developed in this study. Deterministic optimization methods are then employed to maximize the flow rate of the groundwater pumped, maximize the lift height, and minimize the volume of material used for manufacturing. Design variables for the optimization included the dimensions of the pump, well depth, and speed of various parts of the system. The solutions are subject to constraints on the geometry of the system, the bending stress in the treadles, and ergonomic factors. Findings indicate that significant technical improvements can be made on the standard Dekhi design, such as increasing the size of the pump cylinders and hose, while maintaining a standard total treadle length. These improvements could allow the Dekhi pump to be implemented in new regions and benefit additional rural farmers in the developing world.


Author(s):  
Serguei Timouchev ◽  
Andrey Aksenov ◽  
Victor Bogdanov ◽  
Alexander Karpyshev

Computational results of 3D turbulent compressible gas flow in a single-nozzle ejector are compared with experimental data. Full Navier-Stokes equations and k-ε model of turbulence are used for mathematical model of gas flow. In computations the suction gas flow rate was determined and compared with experimental one. Two computational grids — coarse and fine are used to perform simulation. The fine grid is differ from coarse one by adaptation near the nozzle of active gas. Comparison of results carried out on coarse and fine grids shows that the accuracy of coarse grid is enough to get reliable results. Difference of computed and experimental results is less then 4% for the flow rate of passive gas. These results enable to make computational study of the multi-nozzle water-steam ejector. Condensation of steam is taken into account by introducing the equilibrium model of condensation. It is found that location of nozzles and its length are the important parameters of ejector influencing considerably its characteristics. The process of the condensation of water vapor significantly influences the work of ejector with an increase of the suction flow rate by a factor of 2.


Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


Author(s):  
Ashok Jadhavar ◽  
Vidya Doiphode ◽  
Ajinkya Bhorde ◽  
Yogesh Hase ◽  
Pratibha Shinde ◽  
...  

: Herein, we report effect of variation of hydrogen flow rate on properties of Si:H films synthesized using PE-CVD method. Raman spectroscopy analysis show increase in crystalline volume fraction and crystallite size implying that hydrogen flow in PECVD promote the growth of crystallinity in nc-Si:H films with an expense of reduction in deposition rate. FTIR spectroscopy analysis indicates that hydrogen content in the film increases with increase in hydrogen flow rate and hydrogen is predominantly incorporated in Si-H2 and (Si-H2)n bonding configuration. The optical band gap determined using E04 method and Tauc method (ETauc) show increasing trend with increase in hydrogen flow rate and E04 is found higher than ETauc over the entire range of hydrogen flow rate studied. We also found that the defect density and Urbach energy also increases with increase in hydrogen flow rate. Photosensitivity (Photo /Dark) decreases from  103 to  1 when hydrogen flow rate increased from 30 sccm to 100 sccm and can attributed to amorphous-to-nanocrystallization transition in Si:H films. The results obtained from the present study demonstrated that hydrogen flow rate is an important deposition parameter in PE-CVD to synthesize nc-Si:H films.


2021 ◽  
Vol 13 (15) ◽  
pp. 8324
Author(s):  
Viacheslav Morozov ◽  
Sergei Iarkov

Present experience shows that it is impossible to solve the problem of traffic congestion without intelligent transport systems. Traffic management in many cities uses the data of detectors installed at controlled intersections. Further, to assess the traffic situation, the data on the traffic flow rate and its concentration are compared. Latest scientific studies propose a transition from spatial to temporal concentration. Therefore, the purpose of this work is to establish the regularities of the influence of traffic flow concentration in time on traffic flow rate at controlled city intersections. The methodological basis of this study was a systemic approach. Theoretical and experimental studies were based on the existing provisions of system analysis, traffic flow theory, experiment planning, impulses, probabilities, and mathematical statistics. Experimental data were obtained and processed using modern equipment and software: Traficam video detectors, SPECTR traffic light controller, Traficam Data Tool, SPECTR 2.0, AutoCad 2017, and STATISTICA 10. In the course of this study, the authors analyzed the dynamics of changes in the level of motorization, the structure of the motor vehicle fleet, and the dynamics of changes in the number of controlled intersections. As a result of theoretical studies, a hypothesis was put forward that the investigated process is described by a two-factor quadratic multiplicative model. Experimental studies determined the parameters of the developed model depending on the directions of traffic flow, and confirmed its adequacy according to Fisher’s criterion with a probability of at least 0.9. The results obtained can be used to control traffic flows at controlled city intersections.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 650
Author(s):  
Guangtai Shi ◽  
Dandan Yan ◽  
Xiaobing Liu ◽  
Yexiang Xiao ◽  
Zekui Shu

The gas volume fraction (GVF) often changes from time to time in a multiphase pump, causing the power capability of the pump to be increasingly affected. In the purpose of revealing the pressure load characteristics of the multiphase pump impeller blade with the gas-liquid two-phase case, firstly, a numerical simulation which uses the SST k-ω turbulence model is verified with an experiment. Then, the computational fluid dynamics (CFD) software is employed to investigate the variation characteristics of static pressure and pressure load of the multiphase pump impeller blade under the diverse inlet gas volume fractions (IGVFs) and flow rates. The results show that the effect of IGVF on the head and hydraulic efficiency at a small flow rate is obviously less than that at design and large flow rates. The static pressure on the blade pressure side (PS) is scarcely affected by the IGVF. However, the IGVF has an evident effect on the static pressure on the impeller blade suction side (SS). Moreover, the pump power capability is descended by degrees as the IGVF increases, and it is also descended with the increase of the flow rate at the impeller inlet. Simultaneously, under the same IGVF, with the increase of the flow rate, the peak value of the pressure load begins to gradually move toward the outlet and its value from hub to shroud is increased. The research results have important theoretical significance for improving the power capability of the multiphase pump impeller.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.


Sign in / Sign up

Export Citation Format

Share Document